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1. Introduction 

This report presents the results of the initial calibration of the Remedial Design (RD) model 
and data gap analysis performed as part of the Dual Site Groundwater Operable Unit RD 
for the Montrose Chemical and Del Amo Superfund Sites (Site). The original numerical 
model of the Site was developed as part of the Joint Groundwater Feasibility Study (JGWFS) 
to compare remedial alternatives. Although the JGWFS model was based on the results of 
extensive remedial investigations, there were a number of uncertainties associated with the 
model input parameters that were caused by the inherent complexity of the hydrogeologic 
conditions beneath the Site. While these uncertainties are not uncommon when modeling 
complex physical systems such as the Site, they need to be evaluated, quantified, and 
reduced (to the extent possible) to increase the accuracy of modeling predictions for the 
design of the remedial wellfield(s). To achieve this goal, an initial calibration and data gap 
analysis was performed as part of the RD to quantify the predictive uncertainty of the RD 
model, and to identify data types that could have the greatest effect i.n reducing this 
uncertainty (i.e., identify data gaps). The methodology for this analysis is discussed in 
Tasks 2.3 and 2.4 of the Work Plan for Model Development (CH2IvI HILL, 2003). 

The grotuldwater flow model MODFLOW2000 (United States Geological Survey [USGS], 
2000), the solute-transport model MT3DMS (Zheng and Wang, 1999), and the particle- 
tracking code MODPATH (USGS,1994) were used for the development of the RD model. 
MODFLOW2000 and MT3DMS are the updated versions of the numerical flow and 
transport codes that ti=ere used for the JGWFS model (i.e., MODFLOW [USGS,1988] and 
MT3D96 [S.S. Papadopulos,1996]). These codes are widely accepted by the regulatory 
community, and are used extensively by the United States Environmental Protection 
Agency (EPA) at numerous sites across the country, primarily because these codes are in the 
public domain, are well-documented, and have been verified against a number of analytical 
solutions. 

The model domain, locations of boundary conditions, and model grid (other than the 
model-top modification noted in Section 3) of the JGWFS model were used for the purposes 
of the initial calibration/data gap analysis, because no additional interpretation of 
hydrostratigraphic data was performed at this stage. Similar to the JGWFS model, the 
steadv state flow condition was assumed for the purposes of this analysis because no 
additional interpretation of water level trends and fluxes was performed at this stage. The 
appropriateness of the model geometry and steady state flow conditions for the final RD 
model will be assessed based on the results of ongoing data acquisition programs. The 
JGWFS model is discussed in detail in the Fina( JGWFS for the Montrose and Del Amo Sites, 
Appendix B (CH2M HILL, 1998). 

Initial calibration, evaluation of model uncertainties, and data gap analysis were performed 
through the use of a systematic calibration process utilizing the automatic calibration 
software package PEST (Doherty, 2002; Doherty and Johnston, 2003). Results of this 
analysis were used to develop recommendations for collecting additional data in the field, 
which would help to reduce the predictive uncertainty of the model with regard to the 
performance of the remedial wellfield. 
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1. INTRODUCTION 

All modeling iriput and output files and a brief documentation of the results generated for 
this data gap analysis were posted on the File Transfer Protocol (FTP) site for review. It is 
important to note that the model simulations were performed in this study only for the 
purposes of initial calibration/data gap analysis, and are not intended as the ultimate 
design of the remedial wellfield. The objectives of the initial calibration/data gap analysis 
and the organization of this report are discussed below. 

1.1 Objectives of Initial Calibration and Data Gap Analysis 
As mentioned above, the overall objective of the initial calibration/data gap analysis is to 
quantify the predictive uncertainty of the RD model, and to identify data types that could 
have the greatest effect in reducing this iulcertainty. The specific objectives of this work are 
listed below: 

• Create the needed connections and interface, and write needed routines, so that PEST 
will rwz with the MODFLOW2000, MT3DMS, and MODPATH modeling codes for the 
RD model domain and structure. 

• Perform an initial "baseline" calibration to a set of observed and measured calibration 
targets such as water levels, contaminant concentrations, etc. 

• Develop a set of calibrated models that imply large differences in remedial results from 
success to failure. 

• Evaluate the predictive uncertainty of the model with regard to the performance of the 
remedial wellfield, and assess the contribution to this uncertainty from various model 
parameters. 

• Use the results of this evaluation to determine where the iulcertainty may be reducible 
as opposed to irreducible, and which additional field data (e.g., aquifer tests at 
monitoring wells, additional well installations, etc.) are warranted. 

• Provide a modeling tool that is ready to use to recalibrate the model quickly as new data 
are collected. 

1.2 Report Organization. 
The report consists of the following sections: 

Section 1, Introduction — Presents the objectives of this analysis and the report organization. 

Section 2, Calibration Methodology — Discusses the calibration methodology using PEST, 
including initial "baseline" calibration as well as the predictive calibration and wlcertainty 
analvsis. 

Section 3, Initial Calibration — Discusses the assumed distribution and limits for model 
parameters, the calibration targets and target weights, and the initial calibration results. 

Section 4, Data Gap Analysis — Discusses the predictive iulcertainty of the model with 
regard to the performance of the remedial wellfield, such as (1) the mass and volume 
reduction rates of the chlorobenzene plume, and (2) the hydraulic containment of the 
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1. INTRODUCTION 

chlorobenzene plume. The assessment of the model predictive uncertainty was used to 
identify data types that could have the greatest effect in reducing this uncertainty. 

Section 5, Conclusions and Recommendations — Presents the conclusions and 
recommendations of the data gap analysis regarding additional field data that need to be 
collected to reduce the uncertainty of modeling predictions. 

Section 6, References — Presents a list of bibliographic references used in this report. 
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2. Calibration Methodology 

The initial calibration of the RD model and . the data gap analysis were perforined using the 
nonlinear parameter estimation software package PEST (Doherty, 2002; Doherty and 
Johnston, 2003). The methodology for the initial calibration, which is also referred to in this 
report as the "baseline calibration," and for the data gap analysis is discussed below. 

2.1 Initial Calibration Methodology 
As discussed in detail in the Work Plan for the Development of the Groundwater Model for 
the Remedial Design (CH2M HILL, 2003), the model calibration using PEST is performed by 
automatic minimization of the objective function, which is the sum of squared residuals of 
the calibration targets. Calibration targets are observed or estimated parameters such as 
water levels, contaminant concentrations, etc. (see Section 3.2). Residuals are the 
differences between model-simulated and observed conditions. In the process of 
calibration, PEST modifies calibration parameters (e.g., hydraulic conductivity, river 
conductance, etc.) in accordance with the prescribed parameter distribution and limits 
(Section 3.1) until the minimum objective function is achieved (i.e., the objective function 
can no longer be reduced). To achieve a minimum objective function, PEST first runs the 
model in its original condition and determines the total objective function. PEST then 
automatically makes a small change to the first parameter, runs the model, and determines 
the change to the objective function. Next, PEST changes the first parameter back to its 
original value, makes a small change to the second parameter, and so on. When that process 
is complete, the change to the objective function caused by each parameter is used to solve 
for a new set of parameter values. The new parameter values are then used as a starting 
point to repeat the prdcess. When the objective function can no longer be reduced, the 
process is complete. 

Because groundwater flow and transport models are generally nonunique, changes to 
certain parameters can be offset by changes to other parameters, resulting in a similarly 
reduced objective function, and therefore a similar quality of calibration. Hence, a number 
of models can be developed using PEST, all of which would be reasonably well calibrated 
and based on equally viable hydrogeologic parameters for a given physical system. 

A ntunber of inethods (all under the broad name "regularization") are used to obtain a 
unique calibration solution. PEST uses "Tichonov Regularization," in which a"preferred 
corndition" for each calibration parameter needs to be defined by the regularization 
equations (see Section 3.1). The preferred condition could be either a"smoothness 
condition" (i.e., the condition that is based on the assumption that the geologic media is 
homogeneous and heterogeneity is introduced only when it is absolutely necessary to meet 
calibration targets), and/or a set of preferred parameter values, from which deviations are 
tolerable only to the extent that they are supported by the data. A unique calibration 
solution is obtained as the result of this regularization process. However, this solution is 
unique only for that particular regularization mechanism. Should another regularization 
inechanism be used (for example, different parameters governing the smoothness condition, 

E102004003SC010-20-04 EDIT MONTROSE IC&DG ANALYSIS RPT LW1799.DOC/042790006 	 2-1 

BOE-C6-0012892 



2. CALIBRATION METHODOLOGY 

different preferred parameter values, and/or different set of targets), then another solution 
to the inverse problem will be obtained, which could be entirely different from the first. 

The initial calibrattion was based only on one set of preferred conditions (i.e., regularization 
equations) and calibration targets. Consequently, only one solution (i.e., baseline 
calibrattion) was obtained as the result of the initial calibrattion. This baseline calibration 
solution was used as a basis for predictive calibration, which was performed to assess other 
potential solutions to the calibration problem and the impact of these different solutions to 
the predictive outcome (see Section 2.2). The assumed parameter distributtion, limits, 
preferred values, calibration targets, and the calibration results for the initial calibration are 
discussed in Section 3. 

2.2 Predictive Calibration 
As discussed in Section 2.1, a number of models can be developed using PEST, all of which 
would be reasonably well calibrated and based on equally viable hydrogeologic parameters 
for a given physical system. These calibrated models may differ, however, with regard to 
predictions pertaining to the performance of the remedial wellfield. There are several 
methods that could be used to assess the range of model predictions (i.e., assess the 
predictive uncertainty of the model). 

One of the most comprehensive methods discussed in the Work Plan for the Development 
of the Groundwater Model (CH2M HILL, 2003) involves Monte Carlo analysis, in which 
each calibration parameter is assigned a random value, and a set of stochastic fields is 
generated — each based on what is known about the amount of heterogeneity prevailing 
withirn an area. The randomized model consisting of these stochastic fields is then sent 
through the PEST calibration process in order to ensure that its associated objective function 
is acceptable. This full stochastic analysis would provide the most comprehensive 
information and most quantitative assessment of the modeling uncertainty. In such an 
analysis, PEST would run hundreds of models (each requiring about 1,000 individual rLU1s 
to calibrate) with differing stochastic parameter fields. The trade-offs are that this analysis is 
the most costly and time-consuming, and most subject to issues with numerical stability. 

The Work Plan for the Model Development (CH2M HILL, 2003) stated that depending on 
the numerical behavior of the flow and transport models, this or other methods may be 
implemented to assess the predictive Luncertainty. During the initial calibration, it was 
determined that the MT3DMS code was not stable enough to support a full stochastic 
analysis in the RD model. Therefore, an alternative method of predictive calibration was 
selected for the analysis of predictive Luncertainty. The use of this method greatly reduced 
the cost and duration of the modeling effort. However, the resulting evaluation of modeling 
>rulcertainty is somewhat tess quantitative than wrhat could be obtained by a full stochastic 
analysis, though it is still significantly superior to the knowledge of l.uzcertainty attainable 
using only the original JGWFS model. 

Predictive calibratiorn involves the use of "predictive targets" in the calibration process in 
addition to the calibration targets. The predictive targets are based on the standards, 
requirements, and specifications for the remedial actions outlined in Section 13 of the 
Record of Decision (ROD) (EPA,1999) and include the rates of volume and mass reduction 
in the aquifer as well as the plume containment targets (see Sections 4.1 and 4.2). In the 
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2. CALIBRATION METHODOI.OGY 

process of predictive calibration, the model is rtuz by PEST in both calibration and predictive 
modes. PEST is provided with an objective function, which is the sum of squared residuals 
of both the calibration and predictive targets. The value of this objective function is slightly 
higher than that for the baseline calibration (i.e., best calibration that PEST achieved during 
the initial calibration process). For example, if the total objective function at the end of the 
baseline calibration was 100, PEST might be allowed to reach an objective f>,ulction as high 
as 102 while meeting both the calibration and predictive targets. This process results in a 
model that is, essentially, just as well-calibrated, but possesses model parameters that result 
in meeting the predictive targets. 

Several combined "calibration/prediction" rLU1s were performed in the process of predictive 
calibration to identify different combinations of model parameters that would cause 
opposite predictive outcomes (i.e., possible best and worst outcomes) with regard to the 
performance of the remedial wellfield, while satisfying the calibration constraints. This was 
achieved by using the same calibration targets and different sets of predictive targets (i.e., 
one set of predictive targets prescribed success, and another set of targets prescribed failure 
of the remedial wellfield to meet certain design criteria). The objective of these simulations 
was to obtain the maximum range of possible predictions of the calibrated model(s) with 
regard to the performance of the remedial wellfield (i.e., assess predictive uncertainty of the 
model). For example, a predictive target of partial containment was used to identify a set of 
viable model parameters resulting in both model calibration and the failure of the remedial 
wellfield to contain the plume (see Section 4.2). Conversely, a predictive target of complete 
plume containment was used to determine a set of calibrated parameters that resulted in 
adequate performance of the remedial wellfield with regard to containment. If the best- and 
worst-case simulations were similar in predictive outcome (as was determined for the 
plume containment in the Gage Aquifer, where plume containment was achieved under 
different sets of predictive targets), the predictive uncertainty of the model was considered 
to be acceptable, and the existing data were considered sufficient for this particular 
modeling prediction. However, if the simulated results varied significantly between the 
possible best and worst cases for meeting certain remedial design criteria, then the most 
critical parameters with regard to the model predictions of this criteria were identified and 
recommended for further assessment to the extent possible. 

T'he identification of the most critical parameters affecting the performance of the remedial 
wellfield was performed based on several qualitative and quantitative analyses, which 
included the qualitative comparison of calibrated model parameter distributions, evaluation 
of the sensitivity of the predictive targets to each model parameter, and evaluation of the 
contribution of each parameter to the predictive uncertainty of the model. 

There are generally two primary sources of parameter uncertainty in the calibrated model. 
First, there are often an infinite number of ways that parameters could be varied while still 
maintaining the model in a perfectly calibrated state. This results from the inherent 
nonLuliqueness of the inversion process, where a large number of parameters are calibrated 
against calibration targets. The second source of uncertainty comes from measurement 
noise (i.e., potential measurement errors in calibration targets). The estimates of parameter 
contribution to the model predictive Lulcertainty performed as part of this data gap analysis 
considered both of these sources of parameter uncertainty. A methodology for these 
estimates is deseribed in The Role of the Calibration Process in Redticing Model Predictive Error 
(Moore and Doherty, 2004) presented in Appendix A. This methodology takes into account 
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2. CALIBRATION METHODOLOGY 

potential meastirement noise and variability of model parameters at a level of detail that is 
sufficient to influence model predictions, but is too fine to be captured by the calibration 
process. The contribution of each parameter to predictive uncertainty is estimated as 
predictive error variance based on (1) the sensitivity of the prediction to changes in the 
parameter estimated using PEST during calibration, and (2) the probability distribution (i.e., 
assumed statistical distribution) of the parameter (see Section 3.1.1). This approach is more 
comprehensive then simply ranking parameter sensitivities, because a very sensitive 
parameter may have a small standard deviation, and thus result in little reduction of 
uncertainty if it becomes more accurately known (i.e., gets measured in the field). 
Combining the sensitivity with the statistical distribution is essentially a normalizing 
process, resulting in variances that are directly comparable, and additive. The total 
predictive error variance is the sum of the contributions from each parameter. 

Parameters that had the highest contribution to the model uncertainty with regard to a 
particular prediction were identified in terms of (1) type (e.g., hydraulic conductivity, 
boundary conditions, etc.), (2) aquifer, and (3) location (to the extent possible). This 
information was then used to provide recommendations for additional data collection 
programs (see Section 5). 
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3. Initial Calibration 

The initial "baseline" calibration of the Site model represents one of the multiple calibration 
solutions, which provides a reasonable match between the observed, measured, and 
estimated parameters (i.e., calibration targets) and simulated conditions. This model was 
developed on the basis of the JGWFS model (i.e., using MODFLOW2000 and MT3DMS 
numerical codes, grid and layering of the JGWFS model, steady-state flow and transient 
transport calibration, and general head boundaries). The transient transport run was 
performed for a period of 57 years, from 1945 (the assumed time of contaminant release to 
groundwater) through 2002 (the latest period for which the concentration data were 
available at the time of initial calibration). The initial concentrations of chlorobenzene and 
parachlorobenzene sulfonic acid (p-CBSA) for the calibration run were assumed to be equal 
to zero outside of the source area located at the Montrose property. The simulated locations 
of the source terms were similar to those of the JGWFS model. 

In the JGWFS model, model layers could convert between confined and unconfined 
conditions. Nonlinear behavior introduced by wetting and drying model cells, a known 
feature of the JGWFS model, commonly results in convergence problems for PEST. To 
increase solution stability and reduce model run times, the top of the RD model was 
modified to reflect the approximate location of the water table, rather than the land surface- 
as in the JGWFS model. As part of this process, all layers of the model were converted to 
confined conditions. This modification is considered acceptable, because the water table 
beneath the site occurs within the aquitard material (i.e., the Upper Bellflower Aquitard 
[UBF] or Middle Bellflower B-Sand [MBFB]) composed mostly of interbedded silty sands 
and silts. Silty interbeds overlaying the water table could potentially provide localized 
confinement. In addition, because the foctts of the remedial actions is the deeper confined 
aquifers, such as the Middle Bellflower C-Sand (MBFC) and the Gage Aquifer, the 
conversion of the water table aquifer to confined conditions is not expected to have an effect 
on the simulations of the remedial wellfield. 

The grid, layering, and position of sources in the JGWFS model are described in detail in the 
JGWFS for the Del Amo and Montrose Site (CH2M HILL,1998). Table 3-1 shows the 
correlation between the hydrostratigraphic units beneath the site and model layers. 

In the process of the baseline calibration, PEST was given (1) parameter distribution (e.g., 
fixed or variable, etc.), limits, and preferred valttes for model parameters, and (2) a set of 
calibration targets. and weights (see Sections 3.1 and 3.2). As mentioned above, the 
numerical model files for the baseline calibration were provided at the CH2M HILL File 
Transfer Protocol (FTP) site. 
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3. INITIAL CALIBRATION 

TABLE 3-1 
Hydrostratiqraphic Units and Model Lavers 

Hydrostratigraphic Units 
(HSUs) - # 

Model Layers Del Amo Nomenclature Montrose Nomenclature 

Upper Bellflower Aquitard (UBF) — 1 Upper Bellflower Aquitard (UBA) 1 

Middle Bellflower 
Aquitard (MBF) 

MBFB — 2 2 

MBFM — 3 3 

MBFC — 4 Bellflower Sand 4 and 5 

Lower Bellflower Aquitard (LBF) — 5 Lower Bellflower Aquitard (LBF) 6, 7, 8 

Gage Aquifer — 6 Gage Aquifer 9 

Gage-Lynwood Aquitard (GLA) — 7 Gage-Lynwood Aquitard (GLA) 10, 11, 12 

Lynwood Aquifer — 8 Lynwood Aquifer 13 

3.1 Parameter Distribution and Limits 
As described below, the values of some model parameters were fixed (i.e., were not allowed ,  
to change in the calibration process), ~~hile others, referred to as calibration parameters, 
were allowed to vary to achieve the best match between the simulated conditions and 
calibration targets. Fixed parameters were assigned values based on field tests and 
estimates performed during the remedial investigations (RI) and JGWFS (e.g., horizontal 
hydraulic conductivity values were fixed at the locations of aquifer pump tests) and/or 
literature and prpfessional judgement where field data were not available. Calibration 
parameters were estimated using PEST. These estimates were performed in accordance 
with the parameter distribution and limits assigned to each calibration parameter. For some 
parameters, which were assumed to be constant within a hydrostratigraphic unit (HSU) 
and/or model layer, a single value was estimated per model layer or HSU. Other 
parameters were estimated using pilot points. As discussed in the Work Plan for Model 
Development (CH2M HILL, 2003), pilot points are discrete locations where PEST estimates 
values of the particular calibration parameter needed to match calibration targets at this 
location. The values of calibration parameters at all model cells were then interpolated 
based on the values at the pilot points. 

The parameter distribution, limits, and preferred values assumed for the baseline calibration 
are presented below. Note that the assumptions regarding the model parameters were 
made for the purposes of this data gap analysis based on the existing data collected during 
RI and interpretations made for the JGWFS model. These assumptions will be re-evaluated 
for the RD model based on the results of the ongoing data acquisition programs. 
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3. INITIAL CALIBRATION 

3.1.1 Parameter Distribution and Variability 
The assLUnptions regarding the distribution and variability of calibration parameters and 
parameters, for which the values were fixed, for the baseline calibration are described 
below: 

Distribution of Calibration Parameters 
The assumed spatial distribution for each parameter is presented in Table 3-2 and described 
below. 

Horizontal hydraulic conductivity (Kh), Kh and vertical hydraulic conductivity (Kv) 
ratio (Kh:Kv) of upper units, recharge, and Dominguez Channel conductance were 
assumed to be spatially variable (i.e., were allowed to vary within hydrostratigraphic 
units [HSUs]). 

• Transport parameters such as porosity, dispersivity, distribution coefficient (Kd), 
retardation factor (R), and source concentrations were assumed to be constant within 
HSUs, but were allowed to vary in different HSUs. 

General head boundary (GHB) conductance was calculated from the calibrated 
hydraulic conductivity values (see Section 3.1.2). 

As discussed in Section 2.1, the spatial continuity targets were added to the objective 
fLUUtion to achieve a homogeneous distribution of parameters unless suggested otherwise 
by field data used as calibration targets. 

Variability of Calibration Parameters 

As described in Moore and Doherty (2004), estimates of the parameter contribution to 
predictive Luuertainty of the model require that the probability distribution (i.e., standard 
deviation) be supplied for each model parameter (Appendix A). To simplify the 
mathematical procedure for these estimates, statistical independence of spatial parameter 
variability was assumed for the purposes of this analysis. This assumption is reasonable 
with regard to the parameters that are not allowed to vary spatially within HSUs (i.e., 
constant in each HSU), as vertical correlation is generally very weak in geologic materials. 
For parameters represented by pilot points (i.e., parameters allowed to vary within HSUs) 
spatial correlation is possible. Nevertheless, the assumption of statistical independence was 
adopted for these parameters because the use of pilot points as a parameterization device 
results in a"region of influence" around each of these points, which is of the same order as 
pilot point separation distances. Thus, spatial correlation is already "built into" the 
parameterization scheme. The assumed transformation status and standard deviation for 
each model parameter is presented in Table 3-2. 
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3. INITIAL CALIBRATION 

TABLE 3-2 
Assumed Parameter Distribution. Transformation Status. and Standard Deviation 

Parameter Spatial Distribution Transformation Status Standard Deviation 	I 
(Transformed 
Parameter) 

Porosity Constant in each HSU None 0.05 

Longitudinal dispersivity Constant in each HSU Log 0.5 

Transverse dispersivity Constant in each HSU Log 0.2 

Vertical Constant in each HSU Log 0.2 

Dispersivity 

Chiorobenzene source Constant within source Log 1.0 
concentration area in each HSU 

Ch{orobenzene Kd Constant within each Log 1.0 
layer 

p-CBSA source Constant within source Log 1.5 
concentration area in each HSU 

Riverbed conductance Four pilot points along Log 0.05 
river length 

Elevation of general Six pilot points along None 1.5 (ft ) 

head boundary boundary in each aquifer 

Recharge Pilot points None 0.02 (fUyr) 

Hydraulic conductivity Pilot points within each Log 0.5 
HSU 

Fixed Parameters 

• Values of Kh were fixed (i.e., were not allowed to change in the calibration process) at 
aquifer test locations. 

• Values of Kh:Kv were fixed for lower HSUs (the Middle Bellflower Mud [MBFM] 
through Lynwood Aquifer). 

• Values of GHB heads were estimated based on the extrapolation of available water 
levels and fixed. 

• Source timing was fixed. 

3.1.2 Parameter Limits and Preferred Values 
Parameter limits and preferred values for flow arnd transport parameters are discussed 
below. 

Parameter Limits for Flow Parameters 
• Kh was allowed to range within plus/minus two standard deviations (log-transformed) 

of the geometric mean of available aquifer test data, or within plus/minus 1.5 orders of 
magnitude of the JGWFS model value in the HSUs for which aquifer test data are not 
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3. INITIAL CAL!BRATION 

available. Some HSUs without aquifer test data were assigned multiple values in the 
JGWFS model, in which case a harmonic mean was calculated as the central value. 

• Kh:Kv was allowed to range from 10:1 to 3,162:1 in the UBF (+0.5/-2 orders of 
magnitude from a central value of 1,000, which is not tuzusual for heterogeneous 
formations composed of interbedded sands, silts, and clays such as UBF), from 10:1 to 
1,000:1 in the MBFB, and was fixed at 10:1 in lower tulits•(i.e., in the MBFM through 
Lynwood Aquifer). 

• Recharge was allowed to range from 0.5 to 1.5 inches per year (in/yr), which is within 
plus/mirnis 50 percent of the value applied to most of the JGWFS model. 

• Dominguez Channel conductance was allowed to range within 10 percent (log- 
transformed) of the values used in for the JGWFS model. 

• GHB conductance was calculated for each GHB using the following equation: 
GHB conductance = K*L*W/M, where K is the horizontal hydraulic conductivity at a 
particular cell, L is the thickness of the cell, W is the size of the cell in the direction 
perpendicular to flow, and M is half the size of the cell in the direction parallel to flow. 

• GHB heads were assigned using six to nine pilot points per aquifer layer including 
one point at each model corner (i.e., four points), one point in the middle of the 
northeast and southwest botuldaries of the model (i.e., two points), and additional 
points at the locations where water-level data were available near the boundary. 
Aquitard GHB heads were assigned as averages of heads in the tulderlying and 
overlaying aquifers. For example, the GHB head in Layer 11 of the Gage-Lynwood 
Aquitard (GLA) was calculated as the average of head in the Gage Aquifer (Layer 9) and 
in the Lynwood Aquifer (Layer 13). GHB head in GLA Layer 10 was then calculated as 
the average of heads in Layers 9 and 11. 

Parameter Limits for Transport Parameters 
• Porosity was allowed to range from 10 to 50 percent (JGWFS value plus/minus 

66 percent). 

• Longitudiilal dispersivity (DL) was allowed to range from 0.1 to 1,000 feet, based on the 
scale of the plume. The JGWFS.model used a small value, due to its use o E a stochastic 
hydraulic conductivity field, which intr.oduces dispersion via variation at the model cell 
scale. 

• Transverse (DT) to longitudinal dispersivity ratio was allowed to range from 0.001 to 1, 
based on literature estimates. 

• Vertical (Dz) to longitudinal dispersivity ratio was allowed to range from 1x10-6 to 1, 
based on literature estimates. 

• Kd was allowed to range from 0.001 to 6 milliliters per gallon (mL/g), based on field and 
literature data. 

• R was calculated by MT3DMS from field-measured bulk density values and Kd as 
estimated by PEST. The allowable range was 1 to 90. 
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3. INITIAL CALIBRATION 

Source concentrations for both p-CBSA and chlorobenzene were allowed to range from 
0.0001 to 100,000 micrograms per liter (ug/L). The high end of this range was lower 
than appropriate, due to a data entry error. The low end was designed to allow the 
flexibility to accotuzt for the coarseness with which the source geometry had to be 
defined, given the cell size in the source area (i.e., the source had to be no smaller than a 
single grid cell). The concentration ranges for the chlorobenzene and p-CBSA sources 
were revised to 0.001 to 500,000 ug/L and 0.001 to 1,000,000 ug/L, respectively, to 
account for the solubility limits of these constituents. 

• Source start time was assumed to be January 1945. 

Preferred Values for Model Parameters 
As discussed in Section 2.1, a"preferred condition" for each calibration parameter was 
defined by the regularization equations as a set of preferred parameter values, from which 
deviations are tolerable only to the extent that they are supported by the data. The 
preferred values for model calibration parameters and the rationale for these values are 
presented in Table 3-3. 
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3. INITIAL CALIBRATION 

TABLE 3-3 
Preferred Values for Model Parameters 

Parameter Location 
Preferred 

Value Units Rationale 

Flow 

River Conductance Dominguez 
Channel 

11,000 ftz/d Same as JGWFS model 

Recharge 1 in/yr Same as majority of JGWFS model 

Horizontal Hydraulic 
Conductivity 

UBF 1.9 fUd Geometric mean of aquifer test data in 
this HSU 

MBFB 20 fUd Geometric mean of aquifer test data in 
this HSU 

MBFM 0.015 fUd Same as JGWFS model 

MBFC 145 fUd Geometric mean of aquifer test data in 
this HSU 

LBF 0.005 fUd Professional judgment based on 
previous calibration results 

Gage 36 fUd Geometric mean of aquifer test data in 
this HSU 

GLA 0.0064 fUd Same as JGWFS model 

Lynwood 113 fUd Geometric mean of aquifer test data in 
this HSU 

Horizontal/Vertical Hydraulic 
Conductivity Ratio 

UBF 1,000 Professional judgment based on 
previous calibration results 

MBFB 100 Professional judgment based on 
previous calibration results 

AII others (fixed) 10 Generally the same as JGWFS model 

Transport 

Porosity AII layers 0.3 Same as JGWFS model 

Longitudinal dispersivity AII layers 100 ft Based on scale of chlorobenzene 
plume 

Transverse to longitudinal 
dispersivity ratio 

AII layers 0.5 Same as JGWFS model 

Vertical to longitudinal 
dispersivity ratio 

AII layers 0.001 Same as JGWFS model 

Chlorobenzene source 
concentration 

MBFB 350,000 µg/L Same as JGWFS model 

MBFM 350,000 µg/L Same as JGWFS model 

MBFC 15,000 µg/L Same as JGWFS model 

LBF 10,000 µg/L Same as JGW FS model 

Gage 7,000 µg/L Same as JGWFS model 

Chlorobenzene Kd UBF 0.0053 mUg Same as JGWFS model 

MBFB 0.039 mUg Same as JGWFS model 

MBFM 0.018 mUg Same as JGWFS model 

MBFC 0.13 mUg Same as JGWFS model 

LBF 0.43 mUg Same as JGWFS model 

Gage 0.27 mUg Same as JGWFS model 

GLA 0.73 mUg Same as JGWFS model 

Lynwood 0.53 mUg Same as JGWFS model 

p-CBSA source concentration MBFB 500,000 µg/L Same as JGWFS model 
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3. INITIAL CALIBRATION 

3.2 Calibration Targets 
Five main groups of calibration targets were selected for initial calibration. These groups 
include (1) the Fall 1995 water level data (heads), (2) head differences based on the Fa111995 
water level data, (3) all available chlorobenzene concentration data (i.e., from 1983 through 
2002), (4) all available p-CBSA concentration data, and (5) chlorobenzene and p-CBSA mass 
targets estimated based on kriging of concentration data. The calibration targets were 
subgrouped by model layers (1, 2, 4, 5, 9, and 13). 

The weight of each group was initially set to result in an approximately equal contribution 
from each subgroup to the objective function. These weights were further adjusted during 
the calibration process to improve the match between the observed and simulated results 
and focus calibration on the most pertinent aspects with regard to the modeling objectives, 
such as the above-maximum-contaminant-level (MCL) chlorobenzene distribution in the 
MBFC and the Gage Aquifer. The groups of calibration targets and weighting of these 
targets in the calibration process are discussed below. 

3.2.1 Heads 
All available water level data for Fa111995 were used as calibration targets. If several head " 
measurements were available for the same well, an average of these measurements was 
used as a calibration target for this location. Two head calibration targets located in an 
inactive portion of Layer 1(wells MW2AG and MW07) were assigned to Layer 2 in order to " 
include these measurements in the objective function.. It is important to note that there is a 
set of wells (mostly water table wells) that was used for the JGWFS model calibration; 
however, the data source for these wells was not available. While these data were used in 
the initial calibration, the usability of these data for RD model development will need to be 
assessed. All heads were assigned equal weights in the calibration process. Note that the 
2004 baseline water level measurements were not available at the time of the initial 
calibration and assessment of model uncertainty. Because the 2004 water levels are generally 
consistent with the Fall 1995 data, it is not likely that using the 2004 water levels for the 
steady state flow calibration would change the outcome of the model uncertainty 
assessment. However, the 2004 data will be used for the final RD model. 

3.2.2 Vertical Head Differences 
Vertical head difference calibration targets were calculated for 381ocations where a well was 
located near another well screened in a different hydrostratigraphic unit. The distance 
between wells selected for calculating vertical head differences was limited to 20 feet. Given - 
an average lateral gradient of 0.001 foot per foot (ft/ft) in the model domain, the distance of 
20 feet would result in a maximum error of only 0.02 foot in estimates of vertical head 
differences. This amount of error is negligible given the average head difference of 2.62 feet 
in the 38 well pairs. Head differences were weighted by the inverse of the absolute value of 
the head difference, to equalize the importance of small and large head differences. 

3.2.3 Chilorobenzene Concentrations 
All available chlorobenzene concentrations (i.e., for years 1983 through 2002) were used as 
calibration targets. Note that the 2004 baseline sampling results were not available at the 
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time of the initial baseline calibration and assessment of model uncertainty for predictions 
of mass and volume reduction. These results were added to calibration targets during the 
revisions to the baseline calibration (see Section 4.2.2.1) and were used for simulating 
containment failure scenarios. Because the 2004 results are generally consistent with the 
ltistorical data, it is not likely that adding these results to calibration targets would change 
the outcome of the model uncertainty assessment with regard to mass and volume 
reduction. Therefore, this assessment was not repeated after the 2004 data became available. 

The weights of chlorobenzene concentration calibration targets have been adjusted several 
times in the process of calibration to achieve a better match between the observed and 
simulated distributions. Initially, concentrations were weighted by the inverse of an 
assumed log-transformed standard deviation of 0.05 (based on a visual examination of 
relatively stable portions of chemographs at the site). The standard deviation for a small 
concentration was assumed to be an order of magnitude less than that for a concentration 10 
times higher, which resulted in a weighting scheme that values nondetects and low 
concentrations approximately as much as high concentrations. This distribution of weights 
resulted in a good match of nondetects, but marginal match of the high-concentration 
plume. A linear weighting scheme was then assumed, which resulted in an improved 
match in wells with high chlorobenzene concentrations. The weights were further increased 
in several wells located at and within the 1,000-ug/L concentration contour to better 
reproduce the distribution of chlorobenzene above 1,000 ug/L. 

3.2.4 p-CBSA Concentrations 
All available p-CBSA concentrations (i.e., for years 1983 through 2002) were used as 
calibration targets. Concentrations of p-CBSA were weighted similarly to those of 
chlorobenzene. 

3.2.5 Mass Targets 
Mass targets for chlorobenzene were developed based on kriging of available concentration 
data for a given year (i.e., for years 1983 through 2002). The kriged concentration 
distribution at a particular time was summed to produce a particular mass target. All mass 
targets for a particular chemical had equal weights. 

3.3 Calibration Results 
This section describes the results of the baseline calibration including flow and transport 
calibration, contribution to objective fLulction, and calibrated distributions of model 
parameters. 

3.3.1 Flow Calibration 
The results of the flow calibration are presented in Figures 3-1 through 3-3. Figure 3-1 
presents a scatter diagram of simulated versus measured water levels (heads) and 
calibration statistics. 
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Figure 3-2 presents simulated water level contours and measured water levels for model 
Layers 2, 5, and 9 representing the water table, MBFC, and Gage Aquifer. Figure 3-3 
presents simulated versus observed vertical head differences. 

These figures demonstrate agreement between the observed and simulated water levels and 
vertical head differences. The scatter plot of ineasured and simt>lated water levels shown in 
Figure 3-1 has a slope that is similar to the line of perfect agreement (i.e.,1:1 slope), and is 
located relatively close to this line, indicating a good agreement between the simulated and 
measured heads in all units. 

The calibration error, as measured by the root mean squared (RMS) of simulated heads 
versus measured water level elevations, is 0.68 foot when data for a11215 monitoring wells 
are considered; this also indicates a good match between observed and simulated water 
levels. 

The scatter plot of ineasured and simulated vertical head differences shown in Figure 3-3 is 
also located close to the line of perfect agreement, indicating good agreement between the 
simulated and measured vertical head d.ifferences. The use of vertical head differences 
between the model layers as calibration targets allowed better estimates of vertical hydraulic 
conductivities than using water levels alone. 
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3. INITIAL CALIBRATION 

FIGURE 3-1 
Simulated vs. Measured Water Levels – Baseline Calibration 
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3. INITIAL CALIBRATION 

FIGURE 3-3 
Simulated vs. Measured Vertical Head Differences 
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3.3.2 Transport Calibration 
T'he results of transport calibration are presented in Figures 3-4 and 3-5 for chlorobenzene 
and p-CBSA. T'hese results indicate a reasonably good match between measured and 
simulated concentrations of both constituents. T'he model reproduces the observed 
difference in the orientation of the plumes in the MBFC and the Gage Aquifer. T'he 
simulated chlorobenzene and p-CBSA plumes in the Gage Aquifer are oriented slightly 
more to the east compared to the plumes of these constituents in the MBFC, which is 
consistent with field data. Low to nondetectable concentrations of chlorobenzene observed 
in Gage monitoring wells G-15 and G-16 underneath the high concentration plume in the 
MBFC were also reproduced by the model. 

As discussed in the calibration targets section (Section 3.2) of this report, the baseline 
transport calibration was focused on reproducing the high (i.e., above 1,000 Pg/L) 
concentrations of chlorobenzene, because the distribution of the high-concentration plume 
has the greatest effect on the design of the remedial wellfield. A linear weighting scheme 
was generally assumed for most concentration targets (i.e., equal weights for low and high 
concentrations) with the exception of several wells at the toe of the 1,000-pg/L plume (BF- 
16, BF-11, and BF-17), for which the weights were increased to better reproduce the 
downgradient extent of the plume. 
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3. INITIAL CALIBRATION 

The primary difficulty of transport calibration was to reproduce the steep concentration 
gradient at the toe of the chlorobenzene plume, such as, changes in chlorobenzene 
concentrations from 8,800 ug/L in well BF-11 to 21 ug/L in well BF-25 (located 1,250 feet 
downgradient of BF-11). These difficulties may be attributed to uncertainties associated 
with the historical flowfield, timing and strength of contaminant sources, and the 
simplification of these parameters in the calibration process. As discussed above, the 
baseline calibration assumed steady-state flow based on 1995 water levels, and constant- 
strength sources. The actual historical flowfield likely varied with time. T'he source 
strength also likely varied with time in response to changes in recharge, subsurface flow 
through the source area, and other unknown conditions. As a result, simulated 
concentration gradients at the toe of the chlorobenzene plume are less steep than observed. 
Simulated concentrations in high-concentration wells (BF-16, BF-11, and BF-17) are slightly 
Lulderestimated, while concentrations in the downgradient low-concentration wells are 
overestimated. However, the overall simulated distributions of both p-CBSA and 
chlorobenzene match the observed conditions reasonably well. 

3.3.3 Contribution to Objective Function 
The contribution to the objective function from different calibration targets is presented in 
Figure 3-6. Calibration weights were designed such that heads, chlorobenzene 
concentrations, and p-CBSA concentrations would contribute in fairly equal proportion to 
the objective function. Vertical head differences and mass targets were considered 
secondary targets. As a result, the baseline calibration accounts for a number of ineasured 
and estimated parameters and is considered to be a reasonable representation of flow and 
contaminant transport conditions beneath the Site. 

FIGURE 3-6 
Contribution to Objective Function from Calibration Targets 

® Heads 
Head Differences 

— Chlorobenzene 
~j p-CBSA 
M Chlorobenzene Mass 
s p-CBSA Mass 
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3. INITIAL CALIBRATION 

3.3.4 Calibrated Distribiations of Model Parameters 
T'he calibrated distribution of horizontal and vertical hydraulic conductivity is presented in 
Figures 3-7 and 3-8. Note that for the HSUs represented by multiple model layers such as 
MBFC, LBF, and GLA, the distribution of these properties is the same in all layers 
representing a given unit, and only the top layer is shown on the figures. The calibrated 
recharge distribution is shown in Figure 3-9. 

Calibrated transport parameters including porosity; longitudinal, transverse, and vertical 
dispersivity (DL, DT, and DZ); Kd; R; bulk density; and chlorobenzene and p-CBSA source 
concentrations are presented in Table 3-3. 

TABLE 3-4 
Calibrated Transport Parameters 

HSU Porosity 
DL  
(ft) 

DT 
(ft) 

D~ 

(ft) 

Chlorobenzene 
Source 
(mg/L) 

Chlorobenzene 
Kd 

(mUg) 
R 

(nan = n) 

p-CBSA 
Source 
(mg/L) 

Bulk 
Density 
(g/cm) 

U B F 0.33 110 0.5 0.001 0.0053 1.02 1.49 

MBFB 0.30 330 0.29 0.0056 1,000,000 0.069 1.34 1,000,000 1.49 

MBFM 0.30 24 380,000 0.019 1.08 1,000,000 1.25 

MBFC 0.27 25 1 0.0005 240,000 0.036 1.21 1,000,000 1.59 

LBF 0.30 7.5 0.5 0.0007 11,000 0.27 2.37 250,000 1.52 

Gage 0.10 14 0.34 0.001 7,100 0.067 2.03 45,000 1.53 

GLA 0:30 59 0.5 0.001 0.73 4.6 1.51 

Lynwood 0.31 100 0.49 0.001 0.052 1.30 1.76 
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3. INITIAL CALIBRATION 

FIGURE 3-9 
Calibrated Recharge 

Areal Recharge (ft!d) 
Zone 	Value 
5213 	0.131 

4558 	0.122 
~~ . 

3907 .. 	0.118 

3256 	0-112 

2605 	0.102 

1954 	8.811e-002 

1303 	 6.957e-002 

652 	5.075e-002 

1 	 3-590e-002 

The values and distribution of model parameters obtained as the result of the baseline 
calibration are reasonable for the hydrogeologic system beneath the Site. However, as 
discussed above, this combination of model parameters resulting in a good match between 
the observed and simulated conditions is one of many possible and equally reasonable 
combinations, which could be obtained with PEST calibration. Consequently, other 
combinations of model parameters should be considered to assess the range of possible 
calibration solutions and the impact of these solutions on model predictions. Alternative 
calibration solutions and their effect on model predictions are discussed in Section 4. 
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4.  Data Gap Ana lysis 

As discussed above, predictive calibration.was used to assess the predictive uncertainty of 
the model and identify the types of data that have the most effect on reducing this 
uncertainty. Predictive calibration involves the use of "predictive targets" in the calibration 
process in addition to the calibration targets. The model is run by PEST in both calibration 
and predictive modes, and the objective function is minimized by reducing residuals 
associated with both calibration and predictive targets. The predictive targets used for this 
data gap analysis were based on the standards and requirements of the ROD (EPA,1999) 
and included (1) rates of contaminant volume and mass reduction in the aquifer targets, and 
(2) plume coritainment targets (see Sections 4.1 and 4.2, respectively). 

The calibration portion of the model run during predictive calibration was similar to the 
baseline calibration (see Section 3). The predictive portion of the run was performed using 
steady-state flow and transient transport for a 50-year period. For the purposes of this 
analysis, the initial conditions for the chlorobenzene plume were based on the Fall 1995 data 
(same data set used for the JGWFS). The more recent data set (i.e., 2004 baseline data) will 
be used for the final design. For the predictive portion of the run, it was assumed that the 
sources of chlorobenzene were contained in all units and did not contribute to the 
chlorobenzene concentrations. Consequently, the source terms were not simulated in the 
predictive portion of the model run. 

The predictive rtuz simulated the remedial wellfield that was developed for Scenario 5 of the 
JGWFS (CH2M HILL, 1998) and revised as part of the preliminary groundwater modeling 
(Hargis, 2003). The use of this remedial wellfield was intended only for the purposes of the 
data gap analysis. The final remedial wellfield will be developed as part of the remedial 
design and optimization task (RD) using the revised RD model. 

As discussed in Section 2.2, the identification of the most critical parameters affecting the 
performance of the remedial wellfield was performed based on several qualitative and 
quantitative analyses. These analyses included the qualitative comparison of calibrated 
model parameter distributions resulting in different predictive outcomes, evaluation of the 
sensitivity of the predictive targets to each model parameter, and evaluation of the 
contribution of each parameter to the predictive uncertainty of the model. 	- 

For this data gap analysis, predictive uncertainty of the model was evaluated only for the 
selected ROD standards and performance criteria mentioned above, stich as contaminant 
mass and volume reduction and containment of the plume. However, all standards and 
requirements of the ROD will be considered for the design of the remedial wellfield. The 
discussion of the predictive uncertainty analysis pertaining to (1) the contaminant mass and 
volume reduction rates, and (2) hydraulic containment of the contaminant plume is 
presernted in Sections 4.1 and 4.2, respectively. 
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4. DATA GAP ANALYSIS 

4.1 Assessment of Model Uncertainty for Predictions of Mass 
and Volume Reduction 

The ability of the remedial wellfield to clean up the chlorobenzene plume in a reasonable 
timeframe is an important requirement of the ROD. The cleanup rates could be expressed 
as the contaminant mass and volume reduction numerical targets. The predictive 
i.ulcertainty of the model with regard to the mass and volume reduction was assessed to 
identify model parameters that are the most critical for reducing this Lulcertainty. The mass 
and volume reduction targets, calibration results and predictions of mass and volume 
reduction for the best and worst case, and the model uncertainty for predictions of mass and 
volume reduction are discussed below. 

4.1.1 Mass and Volume Reduction Targets 
Predictive targets for mass and volume reductions were developed based on the 
requirements of the ROD and the results of model simulations performed for the JGWFS. 
The voli.une and mass reduction rates were estimated as percent volume and mass 
reduction of the plume within the 70-ug/L contour (i.e., above-MCL distribution), based on 
the 1990 through 1995 chlorobenzene concentration data (the same data set as was used for 
the JGWFS). This approach is similar to that of the JGWFS with the exception that, for the 
purposes of this data gap analysis, all of the above-MCL chlorobenzene plume including the 
dense nonaqueous-phase liquid (DNAPL)-impacted area was considered for the estimates 
of the plume volume and mass. For the JGWFS, the DNAPL-impacted area was excluded 
from the calculations of the mass and volume of the plume, because the cleanup of the 
dissolved plume does not appear to be technically practicable in the presence of DNAPL 
(see Teclulical Impracticability [TI] Waiver, Appendix E, JGWFS [CH2M HILL, 1998] and 
the ROD [EPA,1999]). In addition, the predictive portion of the run for this data gap 
analysis did not include contaminant sources, because it was assumed that they were 
contained by the remedial wellfield and did not contribute to the mass and volume of the 
chlorobenzene plume. The JGWFS runs included contaminant sources. While this 
simplification of the mass and volume estiirates is acceptable for the purposes of the data 
gap analysis, these estimates will be revised to account for the TI waiver zone and 
contaminant sources at the RD model development and final wellfield design phase of this 
project. 

In addition to the calibration targeks (see Section 3, Initial Calibration), two sets of predictive 
targets pertaining to the mass and volume reduction were used for the "best-case" and 
"worst-case" runs performed during predictive calibration. For the best case, the predictive 
targets for the mass and volume reduction rates were consistent with the requirements of 
the ROD (EPA, 1999) and results obtained by Scenario 5 of the JGWFS (CH2M HILL,1998). 
For the worst case, the predictive targets for mass and volume reduction rates were 
established to result in a 100 percent increase of the original plume mass and volume. Both 
sets of predictive targets were developed for the MBFC and Gage Aquifer, which are the 
target aquifers for the proposed remedial actions. The increase in mass and volume of the 
plume in the MBFC and Gage Aquifer would only be possible if pumping of the remedial 
wellfietd would fail to contain and remove the contaminant mass, while inducing 
contaminant migration from the UBF into the MBFC and Gage Aquifer. The objective of the 
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4. DATA GAP ANALYSIS 

worst case run was to assess which geologic conditions (if any) could result in such failure 
of the wellfield performance and determine the presence of these conditions in the field, if 
possible. 

4.1.2 Calibration Results for the Best and Worst Case 
Calibrated water levels and chlorobenzene concentrations for the best and worst case are 
compared in Figures 4-1 and 4-2, respectively. The scatter plots of ineasured and simulated 
water levels for the best and worst case are shown in Figures 4-3 and 4-4. The calibrated 
distribution of horizontal hydraulic conductivity for the best and worst case is shown in 
Figures 4-5a and 4-5b, and the calibrated distribution of vertical hydraulic conductivity is 
shown in Figures 4-6a and 4-6b. The calibrated transport parameters for the best and worst 
case are presented in Table 4-1. Based on these results, it appears that both the best- and 
worst-case models are reasonably well calibrated and have realistic parameters. 

A comparison of the calibrated distributions of model parameters reveals differences in the 
distribution of horizontal and vertical hydraulic conductivity between the best and the 
worst case. A zone of lower hydraulic conductivity was assigned to the best case by PEST 
west of the chlorobenzene plume in the MBFC. Higher values of hydraulic conductivity in 
this area were assigned to the worst case. A zone of low hydraulic conductivity in this area 
could improve the performance of injection wells in creating a groundwater mound, which 
serves as a barrier to contaminant migration. In the best case, PEST also assigned a lower 
hydraulic conductivity to the LBF beneath the MBFC chlorobenzene plume than in the 
worst case. This would result in less vertical migration of contaminants from the MBFC into 
the Gage Aquifer, and, consequently, in better performance of the remedial wellfield. 

The recharge distribution for both cases was essentially the same. The greatest differences 
were observed in transport parameters. Calibrated values of dispersivity were higher for 
the worst case in the aquifer tinits (MBFB and MBFC), and lower in the MBFM . Calibrated 
values of Kd, and consequently, R`, were higher for the worst case than those for the best 
case in both the MBFB and MBFC. The differences in transport parameters between the best 
and worst cases are consistent with the differences in predictive targets for these 
simulations. The higher dispersivity assigned by PEST to the worst case simulation causes 
the chlorobenzene plume to spread more within the aquifers, complicating containment and 
resulting in lower rates of volume reduction, which is consistent with the predictive target 
of increasing the volume of the contaminant plume. Higher Kd and R cause sorption of 
contaminants on soil particles of the aquifer formation, resulting in lower rates of mass 
removal for the worst case, which is also consistent with the predictive target for the failure 
of mass removal. 

R is calcufated by MT3DMS based on Kd and bulk density values. 
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4. DATA GAP ANALYSIS 

FIGURE 4-3 
Simulated vs. Measured Water Levels -  Best Case 
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FIGLIRE 4-4 
Simulated vs. Measured Water Levels -  Worst Case 
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4. DATA GAP ANALYSIS 

TABLE 4-1 
Calibrated Transport Parameters for the Best and Worst Case 

HSU Porosity ' DL  (ft) 

:L 

D DZ/DL  

Ch oro 
Source 
(ug/L) 

nzene oro enzene • 
Kd 	 R 
(mlJg) 	;(n.n  = n) 

p- 
Source 
(ug/L) 

ul 
Density 
(g/cm3) 

UBF 0.31 86 0.5 0.001 0.0053 ~ 1.03 1.49 
M  BFB 0.27  4.4 0.31 0.0003  100000! •0.017' 1.09 100000 1.49 
MBFM _ 0.30 75 36000 0.021 1.09 100000 1.25 
MBFC 0.27 6 1 0.0004 24000 0.01 1.06 100000 1.59 
LBF 0.30 3.4 0.5 0.0006 1100 0.097, 1.49 22000 1.52 
Gage 0.10 11 0.34 0.001 730 0.099; 2.51 4500 1.53 
GLA 0.30 , 	30 0.5 0.0009  0.73 ; 4.67  1.51 
Lynwood ' 	0.30 96 0.5 0.001 0.053' 1.31 1.76 

HSU Porosity DL  (ft) 	- DT/DL 	DZ/D L  

hloro 

Source 
(ug/L) 

nzene  fflooffiazeNneIMM"M 
Kd 	;R 
(mL/g) 	;(n,H  - n) 

Source 

(ug/L) 

Bu k 

Density 
(g/cm3) 

UBF 0.30 1101 0.5. _ 0.001  0.0053 ` 1.03 1.49 
MBFB 0.31 1000' 0.19 0.0029' ~ 100000 2.11 11.09 100000 1.49 
MBFM _  

~ 	

0.30 9.8  _ 
T 

 _ 39000 0.021' 1.09 100000 1.25 
MBFC 0.30 190 1 0.00014 21000 0.23 __ 2.22 100000 1.59 
LBF 0.30 20 0.5. 0.00047 1100 

 
0.0821 1.42 24000 1.52 

Gage 0.10: 7.2 	Y  0.2_8 0.001 730 0.027 i 1.41 4300 1.53 
GLA 0.30 22 0.5, 0.001 0.68: 4.42 1.51 
L nwood . 	0.30 110: 0.48 0.001 0.052 1.31 1.76 

4.1.3 Predictions of Mass and Volume Reduction for the Best and Worst Cases 
Table 4-2 presents the comparison of the simulated percent reduction of the chlorobenzene 
plume volume and mass for the best- and worst-case simulations in the MBFC and Gage 
aquifers. It also provides the percent reduction estimates for the baseline calibration and for 
JGWFS Scenario 5. Figure 4-7 compares the volume retained in the aquifers after 10, 25, and 
50 years for the best and worst case and the baseline calibration. Figure 4-8 compares the 
percentage of mass retained in the aquifers for the same scenarios. 

TABLE 4-2 
Com arison of the Simulated Percent Reduction of the Chlorobenzene Plume Volume and Mass 
Simulation 	I 	 MBFC 	 Gage 

Percent Volume Reduction 

10 Years 25 Years 50 Years 10 Years 25 Years 50 Years 

JGWFS 35 010 68% 94°!0 44°10 68°10 81°!0 

Best 75% 97% 99% 100% 100% 100% 

Baseline 39% 66°% 83% 100% 100% 100% 

Worst 5% 31% 42% 97% 100% 100% 

Percent Mass Reduction 

10 Years 25 Years 50 Years 10 Years 25 Years 50 Years 

JGWFS 76% 89% 92 ic 68% 85% 86% 

Best 94% 99% >99% 100% 100% 100% 

Baseliile 68% 86% 92% 100% 100% 100% 

Worst 57% 74% 81% 99% 100% 100% 
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4. DATA GAP ANALY8IS 

FIGURE 4-7 
Comparison of the Percentage of Volume Retained in the Aquifer 
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FIGURE 4-8 
Comparison of the Percentage of Mass Retained in the Aquifer 
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4. DATA GAP ANALYSIS 

Figures 4-9 and 4-10 present simulated distributions of chlorobenzene after 10, 25, and 
50 years of remedial pumping using the best- and the worst-case models. Note that these 
figures include concentrations that are below 70 µg/L (i.e., below MCL). These 
concentrations are shown to facilitate the comparison between the best- and worst-case 
results. However, as discussed above, below-MCL concentrations were not considered in 
the estimates of mass and volume reduction rates. 

The results of the predictive simulations indicate a significant difference between the 
performance of the remedial wellfield with regard to mass and volume reduction for the 
best and worst case in the MBFC. While the best-case prediction meets and exceeds the 
ROD requirements, the worst-case prediction results in the significantly slower rates of mass 
and volume removal in this unit. These results indicate that there is a considerable 
uncertainty associated with •the ability of the model to predict mass and volume removal 
rates for the chlorobenzene plume in the MBFC, because three equally calibrated models 
(baseline, best case, and worst case), which are based on equally viable distributions of 
model parameters, produce vastly different results with regard to this prediction. This 
uncertainty can only be reduced if additional site-specific data could be obtained for the 
parameters, which have the highest contribution to this uncertainty. These parameters are 
discussed below. 

The results of the predictive simulations of mass and volume removal in the Gage Aquifer, 
on the other hand, are similar for the baseline calibration, and the best and worst cases. 
These simulations indicate that the certainty of the plume cleanup to below-MCL levels in 
the Gage Aquifer after only 10 years is fairly high in the absence of contaminant sources. 
The JGWFS model estimated lower rates of mass and volume removal u1 the Gage Aquifer, 
because it accounted for the contaminant sources. As discussed above, the contaminant 
sources and the TI waiver zone will be considered in the future simulations of cleanup rates 
for the design of the remedial wellfield. 

As mentioned above ;  a 70-µg/L contour of chlorobenzene concentrations was defined based 
on the available 1990 through 1995 data, which were also used for the JGWFS modeling 
(more recent 2004 baseline data were not available at the time of these analyses). In the 
Gage Aquifer, this contour was "closed" south of well G-19 for the purposes of these 
analyses, although the actual extent of the plume south of G-19 needs to be delineated as 
part of the proposed data acquisition. 

4.1.4 Model Uncertainty for Predictions of Mass and Volume Reduction 
As discussed in Section 4.1.2, differences in model parameters for the best and worst cases 
were compared qualitatively to identify parameters that change the most between these two 
cases and, therefore, have the most effect on the predictive outcome. The biggest differences 
were observed in values of dispersivity and Kd. 

In addition to the qualitative comparison of model parameters, the sensitivity of predictive 
targets to each model parameter was calculated as part of the predictive calibration process. 
The estimated sensitivities were then used to assess the contribution of each parameter to 
the predictive uncertainty of the model. As discussed in Section 2.2, this assessment also 
accounted for the variability of each parameter in the subsurface. A detailed discussion of 
the methodology used to estimate the contribution of different parameters to the predictive 
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4. OATA GAP ANALYSIS 

uncertainty of the model is presented in Appendix A and discussed in Moore and Doherty 
(2004). The est-imated contributions of model parameters to the predictive uncertainty 
pertaining to the rate of volume reduction are presented in Table 4-3. 

TABLE 4-3 
Contributions of Model Parameters to Predictive Unceftainty Penaining to Volume Reduction 

Model Parameter 

Contribution to Uncertainty (i.e., predictive 
error variance) for Volume Reduction 

Targets 

(percent) 2  

MBFC Gage Aquifer 

Total 95 79 

Porosity 0.074 0.054 

Dispersivity 15 3.8 

Chlorobenzene source 
concentration 

0.48 0.10 

Chlorobenzene adsorption constant 
Kd 

24 30 

p-CBSA source concentration 2.0 4.61 

Riverbed conductance 0.00007 0.00002 

GHB heads 1.6 2.5 

Recharge 0.012 0.0017 

Kn  in UBF 0.57 0.060 

Kh  in MBFB 1.6 0.15 

Kn in MBFM 0.078 0.0025 

Kh  in MBFC 16 2.5 

Kh  in LBF 2.5 19 

Kh  in Gage Aquifer 0.82 5.6 

Kh  in GLA 0.36 1.3 

Kh  in Lynwood Aquifer 0.048 0.076 

Kv  in UBF 0.52 0.081 

K„ in MBFB 0.39 0.013 

NOTE: The contribution to uncertainty is expressed in units of variance for percent volume reduction — 
(percent)Z . Larger numbers indicate a greater contribution. 

The contribution of model parameters to the uncertaintv pertaining to the rate of mass 
reduction was generally consistent with that for volume reduction. 

Based on these results, Kd has the highest contribution to the predictive tuuertainty of the 
model vTith respect to mass and volume redtuction rates in both the MBFC and Gage 
Aquifer. However, as discussed above, the predictive tulcertainty pertaining to mass and 
volume reduction in the Gage Aquifer is significantly lower than that for the MBFC. 
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4. DATA GAP ANALYSIS 

Because of the significant variability of Kd in the natural systems such as the Site, and 
because the field experiments required to quantify this parameter are complicated, costly, 
time-consuming, and ordinarily ineffective, uncertainty associated with Kd cannot be 
appreciably reduced. In addition, the phenomenon of "slow desorption or irreversible 
sorption, `* which may have a significant impact on the actual cleanup times, cannot be 
accounted for in the model even if field Kd data are available, because of the limitations of 
the MT3DMS code, which does not allow for this level of complexity in representation of 
dissolved/sorbed contaminant interaction. Consequently, it does not appear that predictive 
Lulcertainty with regard to chlorobenzene mass and volume reduction rates could be 
reduced by collecting additional field Kd data. 

Hydraulic condttctivity and dispersivity in the MBFC also contribute to the predictive 
>.ulcertainty pertaining to volume reduction in the MBFC, but the contribution of these 
parameters is lower than that of Kd. Hydraulic conductivity in the LBF contributes to the 
predictive >.utcertainty pertaining to volume reduction in the Gage Aquifer, but this 
>_utcertainty is fairly low. While the values of dispersivity are very difficult to obtain in the 
field, additional hydraulic conductivity data in the MBFC can be obtained during pilot 
testing. Based on its contribution to predictive uncertainty, additional hydraulic 
conductivity data in the MBFC may reduce the predictive uncertainty of the model 
pertaining to volume reduction rates in the MBFC to some degree. However, as discussed 
above, the significant uncertainty associated with the model predictions of these 
performance criteria in the MBFC will still be caused by uncertainties in Kd. The need for 
additional field values of hydraulic conductivity in the MBFC is also discussed in Section 4.2 
with regard to reducing >_u -icertainty of containment in the MBFC. 

In summary, significant uncertainty is associated with the performance criteria pertaining to 
the rates of cleanup (i.e., mass and volume reduction) in the MBFC. Because the major 
contributor to this >.utcertainty is Kd, which cannot be easily obtained through field 
measurements, this uncertainty is considered to be mostly irreducible and should be 
accoLulted for by the RD and performance monitoring program. The predictive uncertainty 
of the model pertaining to the rates of cleanup in the Gage Aquifer is relatively low. 

" Recent research on the ability of chemical compounds to completely desorb from a solid indicates that solid-phase 
contaminant concentrations can exceed the concentration predicted based on the aqueous-phase contaminant concentration 
and distribution coefficient (Fu et al. 1994; Kan et al., 1994; Kan et al., 1997; Pignatello and Xing, 1995). This phenomenon 
could be explained as slow desorption or irreversible sorption. It is reported that this situation generally happens in materials 
that have been in contact with contaminants for long time periods and have low solid-phase contaminant concentrations, which 
normally are less than 20 milligrams per kilogram (Bedient et al., 1999). 
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4. DATA GAP ANALYSIS 

4.2 Assessment of Model Uncertainty for Predictions of Plume 
Containment 

The ability of the remedial wellfield to contain the chlorobenzene plume is another 
important requirement of the ROD. The predictive uncertainty of the model with regard to 
containment was assessed to identify model parameters that are the most critical for 
reducing this uncertainty. This assessment was performed using the same methodology as 
that used for assessing predictive uncertainty with regard to mass and volume reduction 
described above. Several revisions to the initial baseline calibration were made prior to this 
analysis, based on input froin reviewers. Containment targets, calibration results, model 
predictions with regard to plume containment, and the predictive uncertainty of the model 
are discussed below. 

4.2.1 Containment Targets 
Predictive targets addressing containment of the chlorobenzene plume in the target aquifers 
(MBFC and Gage Aquifer) were included in the calibration process. Predictive calibration of 
the model was performed to meet both calibration and predictive targets. As discussed 
above, the calibration targets included 1995 water levels, vertical water level differences, 
1985 to 2004 chlorobenzene and p-CBSA data, and mass targets. 

Predictive targets for the containment of the plume were developed using the MODPATH 
particle-tracking code. The modeling domain was subdivided into three zones including 
(1) within the chlorobenzene plume, (2) within 1,000 feet of the chlorobenzene plume, and 
(3) elsewhere within the modeling domain. A schematic diagram of these zones is-shown in 

below. The chlorobenzene plume was defined based on a 70- 
Schematic Diagrarn of . 	ug/L contour from the Montrose 2004 Baseline Sampling report 
Containment Target Zones 	(Hargis, 2004). The 70-ug/L contour was "closed" south of well 

G-19 in the Gage Aquifer for the purposes of these analyses, 
although it was understood that the extent of the plume south of 
G-19 would have to be defined as part of the proposed data 
acquisition. Particles were placed in every cell of the model 
domain and labeled according to the zone that cell was located 
in. The predictive targets were set up in such a way that 
particles from Zones 1 and 2(i.e., within, and in the immediate 
vicinity of, the chlorobenzene plume) resulted in the reduction 
of objective function if the particles were captured by extraction 
wells, and the increase of objective function if the particles 
reached other model boundaries. Particles from Zone 3(i.e., 

z~  elsewhere in the modeling domain) resulted in an increase of the 
objective function if they were captured by extraction wells. 

A"counting weight" (i.e., contribution to objective function) was assigned to each particle 
based on a zone it was in, with weights being much higher for cells contained within the 
chlorobenzene plume than for cells in the other two zones. The total weighted count of 
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4. DATA GAP ANALYSIS 

particles entering all extraction wells of the remedial wellfield was used as a means of 
assessing containment. Predictive targets of 90 percent and 75 percent containment were 
established for two different sets of runs to assess hydrogeologic conditions that could result 
in containment failure by the remedial wellfield, which would cause 10 percent and 
25 percent, respectively, of the particles to escape containment. 

As discussed below, sensitivities of predictive containment targets (i.e., the weighted count 
of particles) to each model parameter were calculated using PEST as part of the predictive 
calibration. As with the assessment of uncertainty for mass and volume reduction 
predictions, these sensitivities were used to estimate the contributions of various parameters 
to the predictive uncertainty associated with containment, and to identify model parameters 
that have the largest contribution (see Section 4.2.4 and Appendix A). 

4.2.2 Calibration Results for Revised Baseline Calibration and Containment 
Failure Scenarios 

4.2.2.1 Revisions to Baseline Calibration 
As with the initial calibration, the revised baseline calibration is based solely on matching 
calibration targets and does not include predictive targets (i.e., the model was calibrated 
without regard to mass and volume reduction and/or capture of the plume). The following 
revisions were made to the original baseline calibration, based on the input provided by 
reviewers and to facilitate the predictive uncertainty analysis for plume containment: 

• The error in source concentrations was corrected: Due to a data-entry error, PEST was 
assigning source concentrations that were lower than expected. 

• Calibration targets for chlorobenzene concentrations above 500,000 ug/L measured in 
the source area wells were reduced to 500,000 ug/L to be consistent with the solubility 
of this constituent. 

• Additional pilot points were added in the vicinity of the chlorobenzene plume to 
achieve better resolution for uncertainty analysis. 

• Montrose aquifer test data provided by Hargis (Apri15, 2004 fax) were added as fixed- 
value pilot points for four locations. 

• The regularization target for hydraulic conductivity in the LBF was reduced from the 
original target used for.the initial calibration, which was derived from the JGWFS 
model. As discussed in the Work Plan for Model Development (CH2M HILL, 2003), in 
the PEST calibration process, the calibrated values of hydraulic conductivity are 
estimated as close to the given regularization target as possible unless the deviation 
from this target is required to reproduce the observed conditions. The initial calibration 
indicated the lowest hydraulic conductivity in the LBF in the footprint of the plume, 
which is the area where the observed data are available for calibration. This suggested 
that lower hydraulic conductivity values in the LBF are required to match the measured 
and simulated results. 

2004 baseline sampling data for chlorobenzene and p-CBSA were added to the 
calibration targets. 
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Ca.libration -weights at various wells were changed to improve the match in low- 
concentration wells at the western flank of the chlorobenzene plume in the Gage 
Aquifer. 

Three synthetic calibration targets with nondetect concentration values were added to 
the concentration calibration targets to preclude PEST calibration from simulating 
chlorobenzene migration in the areas where it is not believed to be present based on the 
current interpretation of existing data (see Figures 4-12 and 4-13). One target was 
assigned to the Gage Aquifer west of the chlorobenzene plume (x-coord = 4197790, 
y-coord = 4054550). This nondetect concentration target was added to the calibration 
process to preclude PEST from simulating leakage of elevated chlorobenzene 
concentrations from the high-concentration plume in the MBFC in the vicinity of well 
BF-21 into the area west of the currently defined Gage Aquifer plume. It is important to 
note, however, that although a nondetect target was added to this area for the purposes 
of the data gap analysis, the potential leakage from the MBFC west of tlie currently 
defined plume in the Gage Aquifer needs to be assessed, because this area is located 
downgradient of nondetect well G-16, which currently delineates the western edge of 
the chlorobenzene plume in the Gage Aquifer. Two other nondetect concentration 
targets were assigned to the MBFC between wells BF-30 and-BF-27 (x-coord = 4198473, 
y-coord = 4052473), and wells BF-12 and BF-28 (x-coord = 4200729, y-coord = 4053875). 
These targets were.added to the calibration process to preclude PEST from 
overestimating the extent of the chlorobenzene plume in the MBFC, between and 
downgradient of monitoring wells BF-30, BF-27, and BF-28. While no calibration targets 
(i.e., wells) exist in this area to contribute to objective function and preclude PEST from 
simulating narrow high-concentration distributions escaping between low-concentration 
wells, such distributions do not appear to be realistic. PEST overestimates the 
downgradient extent of the chlorobenzene plume in these locations and attempts.to  
"squeeze" the plume between the low-concentration wells because, as in the initial 
baseline calibration, it is unable to reproduce the relatively steep concentration gradients 
between high-concentration wells BF-16, BF- 11, and BF-17 and low-concentration wells 
BF-30, BF-27, BF-25, and BF-28 at the toe of the chlorobenzene plume. As discussed 
above, these steep concentration gradients could be attributed to variable strength and 
timing of contaminant sources, local and regional variation in the historical flow field 
and hydrogeologic and physical properties of the aquifer formation, and other unknown 
factors that could not be considered in the calibration process. 

4.2.2.2 Failure Scenarios with Regard to Plume Containment 
Four scenarios were generated to assess combinations of model parameters that could result 
in failure of chlorobenzene plume contairunent. Failure scenarios with regard to the plume 
containment could not be developed for the Gage Aquifer, however. This indicates that 
given the existing data and assumed extent of the Gage plume (i.e., the assumed 70-ug/L 
contour for the chlorobenzene plume in the Gage Aquifer), the certainty of containing this 
plume with the JGWFS wellfield is fairly high. The simulated failure scenarios for the 
plume containment in the MBFC are described below. 

1. 90 percent failure scenario with respect to plume containment in the MBFC — 
Version 1: This failure scenario was generated using the same calibration targets as 
the revised baseline calibration, and also included a predictive target for not 
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capturirtg 10 percent of the chlorobenzene plume in the MBFC. The distribution of 
weights for calibration targets for this solution was the same as that for the revised 
baseline calibration. 

2. 75 percent failure scenario with respect to plume containment in the MBFC — 
Version 1: This failure scenario was generated using the same calibration targets as 
the revised baseline calibration, and also included a predictive target for not 
capturing 25 percent of the chlorobenzene plume in the MBFC. The distribution of 
weights for calibration targets for this solution was the same as that for baseline 
calibration. 

90 percent failure scenario with respect to plume containment in the MBFC — 
Version 2: This failure scenario was generated using the same calibration targets as 
the baseline calibration, and also included a predictive target for not capturing 10 
percent of the chlorobenzene plume in the MBFC. The distribution of weights for 
this scenario was altered compared to Version 1 by increasing weights of low- 
concentration and nondetect wells delineating the extent of the plume in the MBFC. 

4. 75 percent failure scenario with respect to plume containment in the MBFC — 
Version 2: This failure scenario was generated using the same calibration targets as 
the baseline calibration, and also included a predictive target for not capturing 25 
percent of the chlorobenzene plLUne in the MBFC. The distribution of weights for 
this scenario was altered compared to Version "L by increasing weights of low- 
concentration and nondetect wells delineating the extent of the plume in the MBFC. 

4.2.2.3 Calibration Results 
Figure 4-11 provides a comparison of head calibration statistics for the revised calibration 
and four failure scenarios in the MBFC. Figures 4-12 and 4-13 provide a comparison of 
calibrated historical chlorobenzene plumes for these scenarios. As indicated on the figures, 
the flow calibration for the five models is comparable with slightly better fit for the baseline 
calibration and 75 percent failure scenario — Version 2. Transport calibration, while 
comparable for the Gage Aquifer, appears to be better for the baseline calibration in the 
MBFC as opposed to the failure scenarios. Version 1 failure scenarios overestimate 
downgradient migration of the low-concentration chlorobenzene plume in the MBFC, while 
generally matching high concentrations. Version 2 failure scenarios underestimate 
migration of the high-concentration plume in the MBFC, while generally matching low 
concentrations. These differences in transport calibration between failure scenarios for 
Versions 1 and 2 are consistent with the differences in calibration weights between the two 
scenarios (i.e., Version 2 scenarios have higher weights for low concentration wells). 

Figures 4-14 through 4-19 show the comparison of the calibrated horizontal hydraulic 
conductivity distribution for the revised baseline calibration and four failure scenarios in the 
MBFB, MBFC, LBF, Gage Aquifer, GLA, and Lynwood Aquifer. Figure 4-20 shows the 
comparison of the calibrated recharge for these scenarios and Figure 4-21 shows the 
comparison of model transport parameters. 

Based on the comparison of the calibrated distributions of model parameters, the greatest 
differences were observed in the distribution of horizontal hydraulic conductivity in the 
MBFC. A high-conductivity zone (i.e., 730 feet per day [ft/day]) was created by PEST at the 
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toe of the chlorobenzene plume for all failure scenarios, while hydraulic conductivities for 
the baseline calibration ranged at that location from about 30 to 270 ft/day. Transport 
parameters were generally similar for all scenarios, except for the values of porosity, which 
were higher in the MBFC for all failure scenarios (i.e., 0.4), as opposed to porosity of 0.3 for 
this unit in the baseline calibration. The higher values of porosity generally result is slower 
velocity of contaminant migration. It is likely that PEST assigned higher porosity to the 
MBFC because it was required to compensate for the high hydraulic conductivity at the toe 
of the plume, which otherwise would cause an overestimate of the extent of the historical 
plume in the MBFC. 
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4. DATA GAP ANALYSIS 

4.2.3 Predictions of Plume Containment for the Revised Baseline Calibration and 
Failure Scenarios 

Figure 4-22 shows the comparison of particle tracking results for the evaluation of 
containment in the MBFC for the baseline calibration and failure scenarios. As mentioned 
above, complete plume containment by the JGWFS wellfield was achieved in the Gage 
Aquifer by all calibrated solutions including the baseline calibration and four failure 
scenarios. 

The revised baseline calibration predicted almost complete containment of the 
chlorobenzene plume in the MBFC by the JGWFS wellfield. Both sets of failure scenarios 
(i.e., Versions 1 and 2), on the other hand, were consistent in predicting similar failure 
mechanisms for plume containment in the MBFC in spite of differences in the calibration 
methodology used for these scenarios. Based on these results, it appears that contaminated 
groundwater could poterntially escape containment at the toe of the chlorobenzene plume in 
the MBFC because of the potential presence of a high hydraulic conductivity zone at this 
location. Another pathway for escape of contaminated groundwater could exist in the 
western portion oE the chlorobenzene plume in the MBFC (see baseline calibration and 
90 percent failure Version 2), also due to the potential presence of a higher hydraulic 
conductivity zone. 

The results of these predictive simulations indicate a significant difference between the 
performance of the remedial wellfield, with regard to plume containment in the MBFC, for 
the baseline calibration and failure scenarios. Consequently, there is a considerable 
uncertainty associated with the ability of the model to predict plume containment in this 
>.u1it. This tmcertainty can be reduced if additional site-specific data could be obtained for 
the parameters that have the highest contribution to this tulcertainty. The discussion of 
these parameters is presented below. 
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4.2.4 Model Uncertainty for Predictions of Plume Containment 
As discussed above, the qualitative comparison of calibrated model parameters indicated 
significant differences in values of horizontal hydraulic conductivity at the toe of the 
chlorobenzene plume in the MBFC, and porosity of the MBFC. In addition to the qualitative 
comparison of model parameters, the sensitivity of predictive targets to each model 
parameter was calculated as part of the predictive calibration process. Similar to the 
uncertainty analysis for the predictions of mass and volume reduction, the estimated 
sensitivities were used to assess the contribution of each parameter to the predictive 
uncertainty of the model with regard to plume containment in the MBFC and the Gage 
Aquifer. A detailed discussion of the methodology used for these estimates is presented in 
Appendix A and discussed in Moore and Doherty (2004). The estimated contributions of 
model parameters to the preciictive uncertainty pertaining to plume containment are 
presented in Table 4-4. 

TABLE 4•4 
Contributions of Model Parameters to Predictive Uncertainty Pertaining to Plume Containment 

Model Parameter 

Contribution to Uncertainty (i.e., predictive 
error variance) for Plume Containment 
Targets (weighted count) 

MBFC Gage Aquifer 

Total 24,000,000 210,000 

Porosity 450,000 34 

Dispersivity 2400 60 

Chlorobenzene source 
concentration 

78,000 240 

Chlorobenzene adsorption constant 230,000 130 

p-CBSA source concentration 2300 110 

Riverbed conductance 1700 9.9 

GHB heads 6,000,000 37,000 

Recharge 1,800,000 37 

Kh  in UBF 140,000 390 

Kh in MBFB 46,000 590 

Kh in MBFM 270 250 

Kh in MBFC 15,000,000 430 

Kr, in LBF 700,000 16,000 

Kr, in Gage Aquifer 9800 150,000. 

Kh in GLA 1200 8100 

Kh in Lynwood Aquifer 1700 61 

K„ in UBF 130,000 360 

K„ in MBFB 6,100 330 

NOTE: The contribution to uncertainty is expressed in units of variance for "weighted count of particles", which 
was used as a surrogate for capture (See Appendix A) —(weighted count) 2. Larger numbers indicate a greater 
contribution. 
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Based on these results, the predictive uncertainty of the model with regard to plume 
contairunent in the MBFC is significantly higher than that for the Gage Aquifer, which is 
consistent with the inability of PEST to identify a combination of parameters that would 
result in the plume containment failure in the Gage Aquifer. Horizontal hydraulic 
conductivity of the MBFC has, by far, the highest contribution to the uncertainty associated 
with containing the plume in this layer. GHB conditions and recharge are the second and 
third most important factors contributing to this uncertainty. 

Based on the above analyses including both (1) qualitative evaluation of calibration 
parameter distributions, and (2) estimates of contribution to uncertainty by each parameter, 
it appears that additional field data on hydraulic conductivity in the MBFC at the toe of the 
chlorobenzene plume could result in significant reduction of predictive uncertainty of the 
model with regard to the plume containment in the MBFC. 

Other parameters that contribute to this uncertainty, such as boundary conditions and 
recharge, are more difficult to measure/determine based on field data. In addition, the 
contribution of these parameters to the predictive uncertainty is significantly lower than 
that of hydraulic conductivity in the MBFC. Consequently, the collection of additional data 
pertaining to these, parameters is not recommended at this time. The contribution of these 
parameters to predictive uncertainty associated with plume containment in the MBFC will 
be taken into consideration by the RD and performance monitoring program. 

4.2.5 Simulation of Failure Scenario with Reduced Hydraulic Conductivity 
This section discusses the results of the additional containment failure scenario, which was 
developed based on the comment from reviewers pertaining to the upper limit of horizontal 
hydraulic conductivity in the MBFC used in the process of predictive calibration. The 
essence of the comment was that the interpretation of several aquifer tests presented in the 
Montrose Remedial Investigation Report (Montrose and EPA,1998) for the MBFC 
overestimates hydraulic conductivity for this unit, and the upper limit of 780 ft/day used 
for the calibration of the hydraulic conductivity range based on these aquifer tests is also too 
high. Because the failure of the reinedial wellfield to contain the plume predicted by the 
model under the scenarios described above appears to be caused primarily by these high 
(i.e., equal to the upper limit) values of hydraulic conductivity at the toe of the plume, 
additional simulations were performed to assess if containment failure could occur with 
lower values of hydraulic conductivities (i.e., to assess predictive uncertainty of the model 
with regard to plume containment in the MBFC given the lower value of the upper limit of 
horizontal hydraulic conductivity in this unit). 

An additional scenario was generated using the same calibration and predictive targets and 
target weights as the 90 percent failure scenario, with respect to plume containment in the 
MBFC Version 2(see Section 4.2.2.2). The upper limit of hydraulic conductivity, however, 
was decreased for this scenario by 50 percent to 340 ft/day. Note, that the upper limit of 
hydraulic conductivity was decreased only for the purposes of these simulations. 
Additional aquifer/pilot testing and evaluation/reinterpretation of the existing remedial 
investigation aquifer test data will be required to verify if such decrease is appropriate for 
future modeling analysis and remedial design. 
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The scatter plofs of ineasured and simulated water levels for this scenario is shown in 
Figure 4-23. The calibrated historical chlorobenzene plumes are shown in Figure 4-24. 
Based on these results, the model appears to be calibrated reasonably well. 

The distribution of calibrated horizontal hydraulic conductivity for the MBFB, MBFC, LBF, 
and the Gage Aquifer is shown in Figure 4-25. As with other containment failure scenarios, 
PEST assigned the upper limit value of hydraulic conductivity in the MBFC to the area at 
the toe of the chlorobenzene plume. However, for this simulation, this value was 50 percent 
smaller (i.e., 340 ft/day) than for other failure scenarios. 

The calibrated transport parameters for this scenario are presented in Table 4-5. The values 
of transport parameters are comparable with the revised baseline calibration. The porosity 
of the MBFC of 0.3 used for this scenario is more realistic than that of 0.4 used by PEST in 
other failure scenarios. As discussed in Section 4.2.2.3, higher values of porosity were likely 
used by PEST to compensate for high values of hydraulic conductivity at the toe of the 
chlorobenzene plume. Because the hydraulic conductivity values used for this scenario 
were 50 percent lower, the lower porosity of 0.3 was sufficient to meet calibration targets. 

FIGURE 4-23 
Simulated vs. Measured Water Levels - Containment Failure Scenario with Reduced K 
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TABLE 4-5 
Calibrated Transport Parameters for the Containment Failure Scenario with Reduced K 

HSU 	Porosity DL  (ft) 	D_T/DL 	DZ/DL  
Chlorobenzene 
(Ng/L) _ 

Chlorobenzene 
Kd 
(mUg) 

R 
(n.1 , = n) 

Bulk 
p-CBSA Density 
(Ng/L) 	(_g/cm3) 

UBF 0.33 110 	0.49 	0.00094 0.0053 1.02 1.49 
MBFB_ 0.20 1.60.049 	0.0026 220000 _  0.025 1.19 480000 	1.49 
MBFM 0.26 43 220000 0.017 1.08 480000 	1.25 
MBFC 0.30 1.2 	0.076 	0.00018 290001 0.4 3.12 94000 	1.59 
LBF _0.24 15 	0.5 	0.00039 9100 0.57 _ 4.61 200000 	1.52 
Ga e_ 0.13 3.1 	0.19 	0.00098 9100 0.042 1.49 36000 	1.53 
GLA 0.29 36 	0.5 	0.0006 0.6 4.12 1.51 
L nwood 028 70: 	0.52 0.00094 0.052 1.33 1.76 

Figure 4-26 shows particle tracking results for the evaluation of containment in the MBFC 
for this scenario. T'hese results are consistent with other failure scenarios in predicting 
similar failure mechanisms for plume containment in the MBFC, in spite of the lower 
hydraulic conductivity at the toe of the plume used for this scenario. Based on these results, 
it appears that hydraulic conductivity of 340 ftJday at the toe of the chlorobenzene plume 
could cause contaminated groundwater to escape containment in the MBFC. T'hese results 
also suggest another pathway for escape of contaminated groundwater in the western 
portion of the chlorobenzene plume, which also is consistent with previous results (see 
Section 4.2.3). Similar to other failure scenarios, complete pl>`une containment by the JGWFS 
wellfield was achieved in the Gage Aquifer >_ulder this scenario. 

T'he results of this predictive simulation indicate that considerable tuuertainty is associated 
with the ability of the model to predict plume containment in the MBFC even if the upper 
limit of hydraulic conductivity for this >_ulit is reduced by 50 percent. T'his further confirms 
the need for additional site-specific data pertaining to the hydraulic conductivity in the 
MBFC. 
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5. Conclusions and Recommendations 

Based on the results of this data gap analysis, the following conclusions and 
recommendations have been drawn: 

Considerable >_u-►certainty is associated with the ability of the model to predict the 
performance of the remedial wellfield with regard to contaminant mass and volume 
reduction rates, and plume containmerit in the MBFC. The uncertainty associated 
with plume containment in this unit is significant even if the upper limit of the range 
of hydraulic conductivity, allowed for model calibration, in the MBFC is reduced by 
50 percent. 

2. The predictive uncertainty of the model with regard to contaminant mass and 
volume reduction and plume containment in the Gage Aquifer is low (i.e., the 
certainty of plume containment and cleanup in the Gage Aquifer as predicted by the 
model is high). 

Predictive uncertainty of the model with respect to mass and volume reduction rates 
in the MBFC is most affected by Kd, which has the highest contribution to this 
>_u-►certainty. Because of the significant variability of this parameter in natural 
systems such as that at the Site, and because the field experiments required to 
quantify this parameter are complicated, costly, time-consuming, and ordinarily 
ineffective, >_u-►certainty associated with Kd cannot be appreciably reduced. Because 
of the highest contribution from Kd, the predictive uncertainty of the model with 
respect to mass and volume reduction in the MBFC is considered to be mostly 
irreducible and should be accotinted for by the RD and performance monitoring 
program. 

4. Predictive >_u-►certainty of the model with regard to plume containment in the MBFC 
is most affected by horizontal hydraulic conductivity of the MBFC. Additional field 
data on hydraulic conductivity in the MBFC could result in significant reduction of 
predictive uncertainty of the model with regard to the plume containment in the 
MBFC. Additional hydraulic conductivity data in the MBFC may also result in some 
reduction of predictive >.mcertainty pertaining to the rates of volume reduction in the 
MBFC. 

All containment failure scenarios predicted similar failure mechanisms for plume 
containment in the MBFC. Based on these results, it appears that contaminated 
gro>_u-►dwater could potentially escape containment at the toe of the chlorobenzene 
plume in the MBFC because of the potential presence of a high hydraulic 
conductivity zone at this location. Another pathway for escape of contaminated 
groundwater could exist in the western portion of the chlorobenzene plume in the 
MBFC, also due to the potential presence of a higher hydraulic conductivity zone. 
Based on these results, additional hydraulic conductivity data should be collected in 
these areas to reduce predictive uncertainty of the model with regard to plume 
containment. 
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6. CONCLUSIONS AND RECOMMENDATIONS  

6. The initial model runs performed in the process of the baseline calibration indicated 
the potential leakage of chlorobenzene from the high-concentration plume in the 
MBFC in the vicinity of well BF-21 into the area west of the currently defined Gage 
Aquifer plume. Based on these results, the potential leakage from the MBFC west of 
the currently defined plume in the Gage Aquifer needs to be assessed, because this 
area is located downgradient of nondetect well G-16, which currently delineates the 
western edge of the chlorobenzene plume in the Gage Aquifer. 

7. The extent of the chlorobenzene plume in the Gage Aquifer needs to be delineated 
south of well G-19. 

8. The use of PEST linked with the MODFLOW2000, MT3DMS, and MODPATH is 
appropriate for the development and calibration of the RD model and design of the 
remedial wellfield(s) for the site. 

In summary, the certainty of model predictions with regard to containing the phune and 
achieving clean up rates in accordance with the ROD criteria is low for the MBFC and 
relatively high for the Gage Aquifer, based on the results of both mass and volume 
reduction and containment failure scenarios. Kd contributes the most uncertainty regarding 
clearn>p rates, but in practice, cannot be reliably measured in the field. Hydraulic 
conductivity in the MBFC is the primary source of Lulcertainty with respect to plume 
containment, as well as a secondary contributor with respect to cleanup rates. 
Consequently, additional hydraulic conductivity measurements in the MBFC should be 
collected during the pilot test program. The impact of parameters which contribute to 
predictive >.ulcertainty but can not be assessed in the field, such as Kd and boLUldary 
conditions, will be further assessed during the RD modeling and considered in the remedial 
wellfield design and performance monitoring program. In addition, if data collected during 
the RD results in different assumptions regarding the distribution of model parameters, it is 
possible that other failure mechanisms than those discussed in this report can be generated. 
While Kd and hydraulic conductivity are expected to contribute the most uncertainty to 
clean up and containment predictions, respectively, during RD modeling, it is possible that 
additional parameters with high contributions to uncertainty will be identified during RD 
model development. If so, they may need to be assessed as part of the second phase of pilot 
testing, and/or considered in the design of the remedial wellfield and performance 
monitoring program. 
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THE ROLE OF THE CALIBRATION PROCESS IN REDUCING MODEL PREDICTIVE ERROR 

1 The Role of the Calibration Process in Reducing Model Predictive Error 

2 Catherine Moore and John Doherty 

	

3 	School of Engineering, University of Queensland, Australia. 

4 	s4024009@student.uq.edu.au , jdoherty@gil.com.au . 

5 Abstract 

	

6 	An equation is derived through which the variance of predictive error of a calibrated 

	

7 	model can be calculated. This equation has two terms. The first term represents the 

	

8 	contribution to predictive error variance that results from an inability of the calibration 

	

9 	process to capture all of the parameterization detail that is necessary for the making of an . 

	

10 	accurate prediction. If a model is "uncalibrated", with parameter values being supplied 

	

11 	solely through "outside information", this is the only term required. The second terrri 

	

12 	represents the contribution to predictive error variance arising from measurement noise. 

	

13 	In an overdetermined system, such as may be obtained through "parameter lumping" (for 

	

14 	example through the introduction of a spatial zonation scheme), this is the only term 

	

15 	required. It is shown, however, that parameter lumping is a form of "implicit 

	

16 	regularization", and that ignoring the iinplied first term of the predictive error variance 

	

17 	equation can potentially lead to underestimation of predictive error variance. 

	

18 	A model's role as a predictor of environmental behavior can be enhanced if it is 

	

19 	calibrated in such a way as to reduce the variance of those predictions which it is required 

	

20 	to make. It is shown that in some circumstances this can be accomplished through 

t 
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21 	"overfitting" against historical field data. It can also be accomplished by giving greater 

22 	weight to those measurements which carry greatest information content with respect to a 

23 	required prediction. This raises the specter that a single "calibrated model" may not 

24 perform as well in environmental management as a number of models, each of which is 

25 	calibrated in such a way as to optimize its accuracy in making a prediction of a specific 

26 	type. 

27 	Introduction 

28 	Models are often used to make predictions of environmental behavior. Used in that role 

29 	they support environmental management. A vital aspect of the model construction 

30 	process is the calibration phase. During this phase model parameters are adjusted until the 

31 	model's replication of historical field measurements is judged to be "reasonably good". It 

32 	is then assumed that this constitutes sufficient justification to use the model to make 

33 	predictions, and that those predictions will also be "reasonably good". 

34 	Unfortunately even predictions made by a model that matches historical data perfectly 

35 	may be considerably in error (Moore and Doherty, 2004a). In fact, a model's predictive 

36 	uncertainty will only be reduced by calitiration if the information content of the 

37 	calibration dataset is able to constrain those parameters that have a significant bearing on 

38 	that prediction. Thus, for example, if a model is built to make predictions of contaminant 

39 	transport, then its performance in this regard will be better served if it is calibrated 

40 	against historical contaminant concentration data, than if it is calibrated solely against 

41 	groundwater heads. (see, for example, Harvey and Gorelick, 1995; Poeter and Belcher 

J 
	42 	1991; Frederick and Doherty, 2003; Franssen et al., 2003; and Feyen et al., 2003). For the 
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43 	same reason, Tiedeman et al. (2003) assert that model predictive uncertainties may not 

44 	necessarily decrease with calibration to a larger dataset. 

45 	Model predictive uncertainty arises from a number of sources. In the present paper 

46 	inadequacies in model equations, or in the numerical implementation of those equations, 

47 	will be neglected, and only those pertaining to its parameterization will be considered. 

48 	Information on model parameters comes from two sources. The first of these sources is 

49 "prior information" on parameter values originating from direct measurement of system 

50 properties, or from what can be inferred about those properties through.knowledge of the 

51 	materials of which the system under study is composed. Such information is often vague, 

52 	or at best point-based, so is oft®n best expressed in stochastic terms; for models such as 

53 	groundwater models where parameterization is spatially-based, geostatistical 

54 	characterizations of hydraulic properties are often thus employed. The second source of 

55 	knowledge on model parameters arises from historical measurements of system state. 

56 	This is a more indirect form of knowledge of system properties, the information content 

57 	of which is "tapped" during the model calibration process. Unfortunately, this 

58 	information is often contaminated by noise; thus parameter values inferred from such 

59 	data have a stochastic component that originates in the uncertainty associated with field 

60 	measurements, as well as in so-called "structural noise" - a term used to describe various 

61 	unavoidable forms of model inadequacy. Another problem with inferring parameter 

62 values from field measurements is that such measurements, like direct measurements of 

63 	system properties, are often sporadic in both space and time. Hence there is an upper limit 

64 	to the level of parameterization detail that can be inferred from them; see Backus and 
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65 	Gilbert (1969)-, Menke (1984), Kitanidis (1997), Guadagnini and Neuman (1999) and 

66 	Gorokhovski (1996) to mention just a few discussions of this important subject. 

67 	Bayes theorem provides the means to assimilate these two sources of information on 

68 	model parameters into a"posterior parameter distribution" that reflects both the 

69 	constraining effects of the calibration process, and knowledge of parameter values that 

70 	originates from outside of this process. Model predictive probabilities can then be 

71 	evaluated using the relationships between model parameters and model predictive outputs 

72 	encapsulated in the model. If necessary, such an analysis can include geostatistical 

73 	characterizations of prior parameter uncertainty (see for example Woodbury and Ulrich 

74 (2000), Woodbury and Rubin (2000) and papers cited therein). A non-Bayesian, but 

75 	nevertheless effective, means of constraining geostatistical characterizations of parameter 

76 	spatial variability such that historical measurements of system state are respected by the 

77 	model, involve the "bending" or "warping" of stochastic seed fields, thus forcing these 

78 	fields to satisfy calibration constraints. For examples of this methodology see RamaRao 

79 	et al. (1995), LaVenue et al. (1995), G6mez-Hernandezet al. (2003) and Doherty (2003). 

80 	An alternative methodology for analyzing model predictive uncertainty is presented in 

81 	this paper. Use of this methodology is based on the premise that a model has been 

82 	"calibrated" against a set of field measurements as a precursor to its deployment for 

83 	making predictions of future system behavior, this being the most common strategy for 

84 	using models in environmental management. It is further assumed that calibration takes 

85 place as an underdetermined inverse problem. This strategy allows a model to employ a 

86 	level of complexity that is sufficient to represent all processes on which a prediction of 
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87 	interest depends. While parameters pertaining to that complexity may not be uniquely 

	

88 	estimated, it is demonstrated below that full characterization of predictive error variance 

	

89 	requires that this complexity be represented. The theory is then extended to 

90 overdetermined parameter estimation (applicable, for example, where a model domain is 

	

91 	subdivided into a small number of zones of piecewise parameter constancy in accordance 

	

92 	with the principle of parsimony). It is demonstrated that estimates of model predictive 

	

93 	error variance made as an adjunct to model calibration based on this principal can be 

	

94 	seriously flawed unless the effects of such system simplification are taken into account in 

	

95 	making these estimates. 

	

96 	Solution of an underdetermined inverse problem is possible only if some regularization 

	

97 	strategy is employed. The use of regularized inversion in the context of groundwater 

	

98 	model calibration has been discussed by a number of authors, including Vasco et al. 

	

99 	(1997), Clemo et al. (2003), Doherty (2003) and Moore and Doherty (2004a), (2004b). 

	

100 	Software such as P.BST (Doherty; 2004) is freely available for its implementation. 

101 ' Through the use or regularized inversion, simplifications in parameterization necessary 

	

102 	for the achievement of numerical stability of the inverse problem are undertaken by the 

	

103 	parameter estimatiori process itself, rather than through manual simplification as a 

	

104 	precursor to that process. This allows maximum information content to be extracted from 

	

105 	a given calibration dataset. 

	

106 	The discussion below begins by exploring model predictive uncertainty analysis in 

	

107 	contexts where parameterization is unassisted by calibration. After a brief discussion of 

	

108 	regularized inversion, exploration of predictive uncertainty analysis is extended to 
1 
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109 	accommodate the imposition of calibration constraints on parameter values. Through an 

110 	analysis of the equations so derived, some important points regarding the role of model 

111 	calibration in reducing (or not reducing) model predictive uncertainty are discussed. With 

112 	these points in mind the discussion then turns to how the model calibration process can be 

113 made to better serve the model predictive process, particularly with regard to the 

114 assignment of "measurement weights" to elements of the calibration dataset. Finally 

115 	some of the concepts developed in the analysis are applied to a synthetic case to 

116 	demonstrate their use. 

117 	It must be pointed out that the equations derived below are based on an assumption of 

118 	model linearity. Most models, of course, are nonlinear; hence these equations will be only 

119 	approximations in many cases. iVevertheless they are useful for the contribution that they 
~ 

120 	make to our understanding of the calibration process. Furthermore, it is hoped that their 

121 	use can extend farther than this, to a semi-quantitative analysis of calibration outcomes. 

122 	Where such an analysis seeks ordering relationships rather than absolutes (for example in 

123 	determining the relative contribution to uncertainty made by different parameter groups, 

124 	or the relative reduction in uncertainty that can be accrued through acquisition of 

125 	diffe.rent types of supplementary data), conclusions drawn through application of these 

126 	equations are likely to be quite robust, notwithstanding the nonlinear nature of a model to 

127 	which they may be applied. 

C 
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128 Theory 

129 Linear Predictive Uncertainty Analysis for an Uncalibrated Model 

130 	Suppose that the (mxl) vector p contains the values of parameters used by a model. 

131 	Unless these values are accurately known at all places within a model domain, they must 

132 	be described in probabilistic terms. Let the covariance matrix of p be denoted as C(p). 

133 	Let s(a scalar) designate a prediction made by the model; let the sensitivities of this 

134 	prediction to model parameters be represented by the vector y. Then s is calculable using 

135 	the relationship:- 

136 	s = y`p 	 (1) 

~ 

	 137 	where the "t" superscript denotes the transpose operation. (Note that in this, and 

138 	subsequent equations, parameter and prediction offsets are ignored for the sake of 

139 	simplicity. Thus p is to be considered as parameter perturbations from some known 

140 	average value; this makes no difference to the equations and concepts derived below.) 

141 	Through basic matrix manipulation it is easily shown that the variance of s(i.e. (y 2S ) is 

142 	given by:- 

143 	(~5  = y `C(P)y 	 (2) 

144 	Equation 2 was used by El Harrouni et al. (1997) in calculating output uncertainties for 

145 	the DRBEM boundary element groundwater model on the basis of spatially correlated 

146 model parameters. 
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147 	Regularized Inversion 

148 	Let the (assumed linear) relationship between the m model parameters g and n model 

149 	outputs o be represented by the matrix equation: 

150 	Xp = o 	 (3) 

151 	where X is the model "sensitivity" or "Jacobian" matrix. Let h be a vector of field 

152 	measurements corresponding to the model output vector o. h is expressible as:- 

153 	h=Xp+E 	 (4) 

154 	where p represents the "true" parameters of the model (which we will never know), and s 

155 	represents measurement and structural noise associated with h. Let the covariance of this 

156 	noise be represented by the n x n matrix C(E); for better or for worse, this is normally 

157 	assumed to be a diagonal matrix. 

158 	Let the extent of model-to-measurement misfit be represented by an objective function (D 

159 	defined as:- 

160 	4) = (Xp — h)`Q(Xp — h) 	 (5) 

161 	where Q is a positive definite "cofactor matrix". This is normally chosen to be 

162 	proportional to the inverse of C(s), that is:- 

163 	C(F-) = 6n2Q -1 	 (6) 

164 	where the constant of proportionality, 6t,2  (the so-called "reference variance"), can be 

165 	estimated through the calibration process as:- 
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166 	6h2  = 0l(n-m) 	 (7 ) 

167 	where (D is the objective function corresponding to an acceptable level of model-to- 

168 	measurement fit. 

169 	(D of equation 5 is minimized when:- 

170 	X`QXp = X`Qh 
	

:, 

171 	If the matrix X`QX is not of full rank and the inverse problem is thus underdetermined, 

172 	there is no unique solution to equation 8. 

173 	In highly parameterized contexts minimization of (D can lead to "over-fitting". Hence it is 

174 	often better to look for a parameter set p that results in an objective function (Dn  which is 

175 	somewhat higher than minimal. That is, we seek a p which satisfies the equation:- 

176 	(Xp — h)`Q(Xp — h) = (DR 	 (9) 

177 	(Dn  should be set at a value that reflects the measurement and structural noise content of 

178 	the observation dataset on which calibration is based. Whether or not X`QX is of full 

179 	rank, solution of equation 9 is nonunique if (D, is greater than the minimized objective 

180 	function. Thus it must be solved through some kind of regularized inversion process. The 

181 	present discussion focuses on "truncated singular value decomposition" as a 

182 	regularization mechanism. However the conclusions, and many of the equations, derived 

183 	below are just as applicable to other regularization methods such as "constrained 

184 	minimization regularization", otherwise known as "Tikhonov regularization". 

E 

BOE-C6-0012969 



THE ROLE OF THE CALIBRATION PROCESS IN REDUCING MODEL PREDICTIVE ERROR 

185 	Singular value decomposition (SVD) can be used to determine the eigenvalues and 

186 	eigenvectors of X`QX, whether or not this matrix is of full rank. Thus:- 

187 	X`QX = VEV` 	 (10) 

188 	where V is the matrix of eigenvectors of X`QX and E is a diagonal matrix of eigenvalues 

189 of X'QX. Where X`QX has less than full rank some of the eigenvalues of E are zero; in 

190 fact E has as many zero-valued eigenvalues as the rank-deficiency of X`QX. Because 

191 	X`QX is positive semi-definite, its eigenvalues are real, and its eigenvectors are 

192 	orthogonal. Thus:- 

193 	V` = V-1 
	

(11) 

194 Let V be characterized as: 

195 	V = [V1 VZ] 	 (12) 

196 where V1 contains eigenvectors corresponding to the k largest eigenvalues of X`QX, and 

197 ' VZ contains the remaining eigenvectors, including those whose eigenvalues are zero. In 

198 	order to obtain a unique solution for p at an acceptable level of model- to-meas urement 

199 	misfit, let all eigenvectors after the k'th be assigned a value of zero (hence the term 

200 	"truncated" in the description of this regularization methodology). Pre-multiplication of 

201 	equation 8 by V`iV1E-1 1V`1 then results in:- 

202 	V`lp = E- '1V`1X`Qh 	 (13) 

203 	In equation 13 E 1  is the diagonal matrix of non-zero eigenvalues of X`QX. The elements 

~ 	 204 	of the vector V`lp are the inner product of a parameter solution vector with each of the 
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205 	eigenvectors contained in V l . Thus equation 13 solves for the projection of solutions of 

206 	equation 8 onto the subspace of parameter space spanned by the eigenvectors contained 

207 	in Vt. Because Et has no diagonal elements equal or close to zero (which is ensured if k is 

208 	selected low enough), a stable solution to the regularized inversion problem has been 

209 	obtained:- 

210 	p = V1E -1 tV`,X`h 	 (14) 

211 	Thus the m-dimensional inverse problem has been transformed into a k-dimensional 

212 inverse problem confined to the subspace of parameter space spanned by V l . 

213 	Furthermore, by choosing k appropriately, a good, but not excessively good, fit can be 

214 	obtained between model outputs and field data. Normally k is chosen such that (9) is 

215 	approximately obeyed. 

216 	In general, eigenvectors of X`QX (ie. columns of V) corresponding to high eigenvalues 

217 	show low spatial variability within the model domain, whereas those corresponding to 

218 	low eigenvalues tend to show high variability (Moore and Doherty 2004b, Wiggins et al. 

219 	1976). Thus the truncated SVD solution process tends to select smooth solutions to the 

220 	inverse problem, this reflecting the inherent incapacity of a calibration dataset to furnish 

221 	fine system detail in most modeling contexts. 

222 Linear Predictive Uncertainty Analysis for a Calibrated Model 

223 	If equation 4 is substituted into equation 14, we obtain:- 

224 	p = V,E-t IV`1X`Q(Xp + E) 
	

(15) 

lt 
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225 	Expanding terms in this equation and substituting (10), it becomes:- 

226 	p= V1V`lp + V1 E -1 1V`1X`QE 
	

(16a) 

227 	that is:- 

228 	g = Rp + GE 	 (16b) 

229 	where R, the so-called "resolution matrix", describes the relationship between estimated 

230 parameters and "true" parameters. The difference between true and estimated parameters 

231 	is given by:- 

232 	p—g=(I—R)p—Gs 	 (17) 

233 	Equation 17 expresses the "parameterization wrongness" of a calibrated model; 

234 unfortunately this cannot be calculated because p is unknown. However its expected 

235 	value (i.e. E(p -p)) is equal to the expected value of p(i.e. E(p)), assuming that E(E) is 

236 	zero. As was stated above, with the elements of p defined as parameter perturbations 

237 	from their (assumed known) average values, E(p - p, is zero. 

238 	Let it be assumed that the covariance matriX of p(i.e. C(p) as featured in equation 2), 

239 	and the covariance matrix of ineasurement and structural noise (i.e. C(E) as featured in 

240 equation 6), are known; let it be further assumed that p and E are independent. Then C(p 

241 	— p) is easily calculated from (17) as:- 

242 	C(p — pJ =(I — R)C(p)(I — R)` + GC(E)G` 	 (18) 

12 
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243 	From equatiorns 16 it is apparent that where truncated SVD is used as a regularization 

244 	device: 

245 	R = VYt 	 (19) 

246 	and:- 

247 	G = Vt E" 1 1V`1X`Q 	 (20) 

248 	If these relationships plus (6) are now substituted into (18), and use is made of the 

249 	relationship:- 

250 	W` = (V1V 1 ` + V2V2`) = I 
	

(21) 

251 . we obtain:- 

252 	C(p — p) = V2V`2C(p) V2V`2 + a,, 2VIEI -1 V`t 	 (22) 

253 	This expression can be made even simpler if the pre-calibration probability distribution 

254 	C(p) of model parameters is such that they are all independently variable and have the 

255 	same variance a' PZ . In this case equation 18 becomes:- 

256 	C(p — p) = a'p2VZV`2 + anZV~E~~`V`~ 	 (23) 

257 	If a model prediction s is calculated from model parameters p using equation l, we can 

258 	compare the "model-calculated prediction" (i.e. the prediction made on the basis of 

259 	calibrated parameters pp, designated herein as s) with the "true" prediction (i.e. the 

260 	prediction made on the basis of "true" parameters p, designated herein as s) using the 

261 	formula:- 
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262 	s— s= y`(p — P-) 	 (24) 

263 	Equation 24 expresses the "wrongness" or "error" of a model prediction. Once again, this 

264 can never be known. For the same reasons as those already stated with respect to 

265 	parameter "wrongness", its preferred value is zero. Its variance can be calculated from 

266 	(24) as:- 

267 	a2
s-S = y`C(p — P)Y 
	

(25) 

268 	Substitution of this relationship into (18), (22) and (23) yields:- 

269 	62s -S  = y`(I — R)C(p)(I — R)`y + y`GC(f:)G`y 	 (26a) 

270 	62s-s = Y`V2V`2C(p) VZV`zy + 6hZy`VIE, - 'V`,y 	 (26b) 

271 	62s-s = 6PZytV2Vt2y + 6hZYtVIEi  IVt Iy 	 (26c) 

272 	Equation 26a is perfectly general, and pertains to no regularization method in particular. 

273 	Thus exactly the same formula can be used to calculate predictive error variance where 

274 	regularization is achieved through a constrained minimization process. However in that 

275 	case, equations 19 and 20 are r.eplaced by:- 

276 	R = (X`QX + (3 2Z`Q,Z) -1 3(QX 	 (27a) 

277 	G = (X`QX + (3 2Z`Q,Z)-1 3CQ 	 (27b) 

278 	where Z is a matrix of regularization constraints on parameter values (assumed to be 

279 	linear), Q, is the regularization covariance matrix, and (3 2  is the "regularization weight 

~ 	280 	factor", which can also be considered to be a Lagrange multiplier in the constrained 
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281 	minimization process; see Doherty (2003) for a description of this type of regularization, 

282 	and for an example of its use in the groundwater modeling context. 

283 Significance of Equations 

284 	Equations 26 are of great importance. Formulation of predictive error variance using 

285 	these equations has the benefit that the contributions made to this variance by two 

286 	different aspects of the model parameterization process are made explicit. The second 

287 	term of equations 26 is the component of model predictive uncertainty that arises from 

288 	model- to -measurement misfit. In an overdetermined system (where parameters are 

289 	outnumbered by observations), this is the only source of model predictive uncertainty, for 

290 	under these conditions the resolution matrix R is actually the identity matrix, and the first 

291 	term of equations 26 vanishes. Model predictive error analysis based on this term has 

292 	been undertaken by a number of authors in the groundwater modeling context; see, for 

293 	example, Hill (1989) and Christensen and Hill (1999). Vecchia and Cooley (1987) 

294 	extended its use to nonlinear models. 

295 	The first term of equations 26 accommodates the fact that the calibration process cannot 

296 	capture all of the hydraulic detail prevailing within a study area. The further removed is 

297 	the resolution matrix R from the identity matrix I, the larger is this term. In general, both 

298 	data scarcity and high data noise content promote "blurry" resolution matrices, and hence 

299 	loss of system detail in a calibrated model. This can lead to grossly inaccurate model 

300 	predictions, where these predictions depend on that detail. 

301 	For an uncalibrated model the second term of equations 26 is zero and the resolution 

~ 	 302 	matrix R becomes the null 0 matrix (this can be demonstrated by setting Q to zero — 
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303 	effectively giving all observations a weight of zero in the inversion process). Equation 

304 	26a then becomes equation 2, as it should. 

305 The second term of equations 26 also becomes zero when a perfect fit is obtained 

306 between model outputs and field measurements because of the absence of any 

307 	measurement or structural noise (i.e. C(E) is 0). The fact that predictions made by a 

308 	"perfectly calibrated" model can be substantially in error is readily apparent from an 

309 	inspection of the yt(I-R) portion of the remaining term. For an underdetermined system R 

310 	is rank-deficient; therefore its columns span only a subspace of parameter space. It is thus 

311 	possible for y`R to be zero; under these circumstances the calibration process does 

312 	nothing whatsoever to reduce the uncertainty of that particular model prediction, for 

313 	equation 26a then yields the same results as equation 2. 

314 This analysis can be taken a step further. When model-to-measurement misfit is zero, R 

315 	becomes a projection operator. This is easily demonstrated by observing that:- 

316 	RRp = Rp (from p= Rp) 	 (28a) 

317 and 

318 	Rp = p 	 (28b) 

319 	and therefore 

320 	RRp = p= Rp, and thus RR = R 	 (29) 

321 	Equation 28b follows from the fact that Xp = Xp. Also following from this is the fact 

322 	that:- 
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323 	XR = X 	 (30) 

324 	from which, with a little basic matrix manipulation, it can be demonstrated that: 

325 	if Xy is 0, then Ry is 0 	 (31) 

326 	From (31) it follows that y`R will be zero if Xy is 0 and R is symmetrical, as it always is 

327 	when regularized inversion is implemented using truncated SVD. From this it follows 

328 	that if, for a particular model prediction, the vector of predictive sensitivities (i.e. y) is 

329 	perpendicular to all observation sensitivity vectors (i.e. to all rows of the X matrix), then 

330 	the calibration process does nothing to decrease the uncertainty of this prediction. Thus if 

331 	a model is calibrated against data types which bear little relation to the types of 

332 	predictions that a model will be required to make, then there can be no guarantee that the 

333 	calibration process will reduce the uncertainties of these predictions at all. 

334 	Examination of equation 26c allows further insight to be gained into the role of the 

335 	calibration process in reducing (or not) predictive uncertainty. Consider that a prediction 

336 	sensitivity vector y is parallel to an eigenvector of V. That particular eigenvector must 

337 	feature in either the first term or the second term of (26c), depending on whether it 

338 	belongs to V 1  or to V 2 . If it belongs to V Z , then potential "wrongness" in the model 

339 	prediction arises from the fact that the calibration process provides no information that is 

340 	relevant to that prediction. Potential predictive error is governed entirely by 6p2, the 

341 	inherent (pre-calibration) uncertainty of system properties, for the second term in (26c) is 

342 	zero because of orthogonality of y to all members of V l  (because the eigenvectors 

343 	comprising the columns of V are all orthogonal to each other). Thus the uncertainty of 

344 	this prediction is undiminished from that which prevailed prior to model calibration. 
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345 	On the other hand, if the prediction sensitivity vector y is parallel a V i eigenvector, the 

346 	first term of equation 26c is zero and the second term is nonzero. The magnitude of this 

347 	second term depends on two factors. One is the goodness of model-to-measurement fit as 

348 	encapsulated in the term 6h2 ; the other is the magnitude of the eigenvalue corresponding 

349 	to the eigenvector to which the prediction sensitivity vector is parallel. If this eigenvalue 

350 	is small, the contribution to uncertainty arising from the second term can be very large, 

351 	possibly larger than if the model had not been calibrated at all. In this case the calibration 

352 	dataset says less about the parameter combinations that define prediction sensitivity than 

353 	can be said on the basis of knowledge about system properties from outside of the 

354 	calibration process altogether. Under these circumstances, once again, the calibration 

355 	process provides no assistance in reducing predictive uncertainty below that which exists 

356 	if the model had not been calibrated at all. On the other hand, if the pertinent eigenvalue 

357 	is large, then the calibration process may reduce predictive error variance substantially, 

358 	the extent to which it does this being dependent on the measurement error variance 6h
2 . 

359 Tailoring the Calibration Process to Reduce Predictive Error 

360 	The notion of a"calibrated modeP' conveys the idea that a model, once calibrated, can be 

361 	used to make a variety of different predictions of system behavior. It also suggests that 

362 	the calibration process is independent of the prediction process. The analysis presented 

363 	above, however, suggests that the usefulness of environmental models in making critical 

364 	predictions of system behavior can be enhanced if the calibration process is undertaken 

365 	with predictions required by the model kept specifically in mind. 
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366 	When undertaking regularized inversion based on truncated SVD, eigenvectors can be 

367 	shifted from V2 to Vl of equations 26 to increase goodness of fit to a level considered 

368 	acceptable. This is normally done in order of decreasing respective eigenvalue; that is, 

369 	eigenvectors corresponding to high eigenvalues (and hence respecting broad scale 

370 	hydraulic property distributions) are normally shifted to V 1  while those with low 

371 	eigenvalues (reflecting system detail) are retained in V2. As eigenvectors are shifted from 

372 	Vz to Vi the first term of equations 26 falls monotonically (due to the fact that it is 

373 	positive definite), while the second term rises monotonically (for the same reason). The 

374 sum of these terms will thus show a minimum, the location of this minimum being 

375 	dependent on the particular prediction being investigated. However there is no certainty 

376 	that the number of eigenvalues at which this predictive uncertainty minimum is achieved 

377 	(ie. the number of eigenvalues, counting from the highest, at which truncation occurs and 

378 	all further eigenvectors are assigned to Vz and thus assigned an eigenvalue of zero) 

379 	corresponds to the number of eigenvalues required to achieve (but not undercut) a 

380 	suitably defined (D n. In fact, as will be demonstrated below, minimization of error 

381 	variance for a particular prediction may require use of many eigenvalues beyond that 

382 	which is required to achieve a suitable value for 0, and can thus result in what classical 

383 	analysis would perceive as "overfitting". Furthermore, the truncation level for 

384 	miniinizing the uncertainty of one specific prediction may not be the same as that 

385 	required to minimize the uncertainty of another prediction, this lending weight to the 

386 	assertion made above that model calibration should be prediction-specific. 

387 	So how can model calibration be "tuned" to the prediction that it must make? A number 

388 	of options exist. One is to actively seek the minimum in the predictive variance curve, 
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389 	even if this leads to overfitting according to the classical view of model calibration. 

390 	Another option is to vary from the traditional practice of ranking eigenvalues in 

391 	decreasing order of their magnitude when deciding on a level of truncation. This 

392 	traditional strategy always leads to the loss of low eigenvalues from VZ before high 

393 	eigenvalues, regardless of the disposition of corresponding eigenvectors with respect to a 

394 	model prediction of particular interest. An alternative strategy is to take account of the 

395 	orientation of X`QX eigenvectors with respect to predictive sensitivity when deciding on 

396 	the order of eigenvector excision from VZ. Thus, for example, eigenvector A may have a 

397 	lower eigenvalue than eigenvector B. However its inner product with y may be higher. If 

398 	its eigenvalue is not so low that its presence in the second term of equation 26 results in 

399 	higher predictive uncertainty than its presence in the first, it should be included in the 

400 	second term (ie. the V1 term), thus avoiding excision in the truncation procedure. 

401 	An alternative, and simpler, strategy can be employed to increase the likelihood that 

402 eigenvectors of VQX which are parallel to a key model prediction belong to V1 rather 

403 . than to VZ, thus reducing the probability of model error in making that prediction. This 

404 	strategy is to increase the weights associated with observations whose sensitivities are 

405 	more aligned with a particular prediction, relative to those that are orthogonal to it. This 

406 	procedure results in a Q matrix for which equation 6 no longer applies. The second term 

407 	in equations 26b and 26c becomes more complicated as a result; equations 32 repeat 

408 	equations 26 where C(E) is no longer proportional to Q -1  

409 	azS-S = y`(I — R)C(p)(I — R)`y + y`GC(E)G`y 
	 (32a) 

~ 	410 	azS -s  = Y`V2V`2C(P) V2V`2y + 6n
2
y`ViEi -1Vi`X`QC(E)QXV1E1 -1 V`ly 	(32b) 
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411 	(~s-s = 6p2ytV2V
t
2y i- 6h2y

tVlEl 1 V
t

1 X`QC(F-)QXV1E1 -I V` l y 	 (32c) 

412 	With X`QX thus re-formulated, its eigenvectors and eigenvalues also change. However 

413 	now the eigenvectors which are more parallel to y will tend to have higher eigenvalues, 

414 	and hence will be less likely to be truncated in a calibration procedure that orders 

415 	eigenvalues in order of decreasing magnitude prior to truncation. Care must be taken in 

416 	implementing this procedure, however, to ensure that the second term of equations 32 is 

417 	not unduly amplified by providing high weights to observations that are inherently 

418 	unreliable. 

419 	This philosophy of weights assignment violates traditional least squares practice. This 

420 	traditional practice is based on predictive error variance minimization (Bard, 1974) for 

421 	overdetermined systems, in which all parameters to which a prediction is sensitive are 

422 	assumed to be individually estimable through the calibration process. However it is worth 

423 	noting that the strategy of placing increased emphasis on observation types that most 

424 	resemble the types of predictions that a niodel will be required to make, is certainly in 

425 	harmony with the philosophical underpinnings of manual calibration which is often based 

426 	on the simple, but effective, premise that "if you can't fit everything, then at least fit the 

427 	things that matter most". The effectiveness of this strategy will be demonstrated below 

428 	using a synthetic example. 

429 	It must also be pointed out that adherence to traditional weights assignment practices that 

430 are recommended in works such as Hill (1998) presupposes that C(P-) is known or can be 

431 	estimated. Where calibration data noise is dominated by model structural error (as is 

~ 	432 	mostly the case), C(s) is not known nor can be easily estimated. Furthermore many 
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433 	contexts such "noise" may show considerable spatial correlation of unknown magnitude. 

434 Thus the common practice of assuming independence of ineasurement errors (and thus a 

435 	diagonal Q matrix) is, in fact, a violation of the precepts espoused in guidelines such as 

436 	these. In view of this fact, the assignment of weights in a manner that places greater 

437 	emphasis on observations that are more closely related to key model predictions, is 

438 	probably no less in violation of these precepts than any other method of weights 

439 	assignment; however in view of its probably beneficial outcome of reducing predictive 

440 	error variance, it is probably far more effective 

441 	Where regularized inversion is undertaken using methods other than truncated SVD (for 

442 	example constrained minimization) it is also possible to tailor the model calibration 

443 	process such that the variance of model predictive error is minimized. In equations 27 the 

444 	reciprocal of the "regularization weight factor" P plays a similar role to that of k, the 

445 eigenvalue truncation number employed by the truncated SVD method; higher values of 

446 	P result in smoother calibrated fields, and higher values of (D. Normally a value of P is 

447 	sought which results in an "adequate" level of model-to-measurement misfit, that is, an 

448 	objective function equal to a suitably chosen (D,,. However, as will be demonstrated 

449 below, upward variation of P results in a monotonic lowering of the second term of 

450 	equation 26a and a monotonic rise in the first terrn. Hence there is a value of P for which 

451 	the error variance of a particular prediction is minimized. This value will rarely coincide 

452 	with that required to exactly achieve (D n. Hence, one option for tuning the calibration 

453 	process for prediction optimization is to seek that P which minimizes predictive error 

454 	variance. Alternatively (or as well), higher weights could be assigned to those members 

° 	455 	of a calibration dataset that are most pertinent to a particular prediction, as was discussed 
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456 	above in relation to truncated SVD. A further strategy may be to tailor the regularization 

457 	constraint matrix Z to best accommodate the prediction that the model is required to 

458 make. 

459 The Effect of Parameter Lumping 

460 	Classical approaches to model calibration undertake "pre-emptive" or "implicit" 

461 	regularization using some form of parameter "lumping". For a groundwater model this 

462 	often takes the form of spatial parameter definition using a limited number of zones of 

463 	piecewise parameter uniformity. This approach to regularization has the advantage that, if 

464 zones are few enough and defined in accordance with spatial data density, numerical 

465 	stability of the inversion process is guaranteed. However it has the disadvantage that 

466 	some of the information content of the calibration dataset may be lost because the chosen 

467 	parameterization methodology has no means of expressing hydraulic property complexity 

468 	that may become apparent through the calibration process itself. (It should be noted in 

469 	passing that regularized inversion and geologically-based parameter zonation are not 

470 	mutually exclusive; see, for example, De Groot-Hedlin and Constable (1990). The 

471 	advantage of combining zones with regularized inversion based on a large number of 

472 	parameters is that intra-zonal heterogeneity can be accommodated in the model at the 

473 	same time as inter-zonal hydraulic property contrasts if the calibration dataset provides a 

474 	strong enough indication that such intra-zonal complexity exists.) 

475 	Suppose that instead of estimating m parameters whose true values are encapsulated in 

476 	the vector p, j"lumped" parameters comprising the elements of a smaller vector r are 
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477 	estimated in their stead. Suppose further that model outputs corresponding to 

478 	observations are calculated using the relationship:- 

479 	o = Wr 	 (33) 

480 r can be determined through objective function minimization using the formula (same as 

481 	equation 8):- 

482 	r = (W`QW) - 'W`Qh 	 (34) 

483 	Substitution of (4) then yields:- 

484 	r = (W QW)-i W'Q(Xp + E) 	 (35a) 

485 	= R'p + G'E 	 (35b) 

486 where the "modified resolution matrix" R' and the matrix G' of equations 35 are given 

487 	by:- 

488 	R' = (W`QW)"' W`QX 	 (36a) 

489 and 

490 	G' = (W`QW) - ' W tQ 	 (36b) 

491 	Let the relationship between a parameterization based on many parameters p, and that 

492 based on tumping of these parameters (i.e. r) be described by the equation:- 

493 	g = Lr 	 (37) 
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494 where L is a mxj "lumping matrix". In many cases each row of L will be comprised of 

495 	zero elements except for a single element of 1. For example if zone-specific pilot points 

496 	(see Doherty, 2003) are employed as the spatial parameterization basis for g, while the 

497 elements of r are zonal parameter values, each element of g will have the same value as 

498 	the element of r that pertains to the zone in which the corresponding pilot point lies. 

499 With L, R' and G' defined as above, it is easy to show that R and G matrices for use in 

500 equation 26a can be calculated as:- 

501 	R = LR' 	 (38a) 

502 and 

503 	G = LG' 	 (38b) 

504 	Witfi these definitions of R and G, equation 26a provides the full expression for 

505 	predictive error variance of a lumped parameter model. For reasons already discussed in 

506 	relation to underdetermined systems, omission of the first term of this equation (as is 

507 	usually done in practice) can lead to significant underestimation of predictive error 

508 	variance, especially where the underlying system is complex. Unfortunately, however, 

509 	equation 26a may be difficult to apply in practice. This is because its evaluation assumes 

510 	that even though only lumped pararneters are estimated, sensitivities of a much larger 

511 	number of distributed parameters have also been calculated (for use in the X matrix). 

512 	Nevertheless, this analysis demonstrates that estimation of predictive error variance based 

513 	only on the statistics of model-to-measurement misfit neglects an extremely important 

514 	contributor to potential model error. Where lumping is significant, and R is thus 

25 

BOE-C6-0012985 



THE ROLE OF THE CALIBRATION PROCESS IN REDUCING MODEL PREDICTIVE ERROR 

515 	significantly different from I, and/or where predictive sensitivities have a large 

516 	component in the subspace of m dimensional parameter space spanned by (I — R), neglect 

517 	of this contribution may make such estimates almost meaningless. 

518 Synthetic Example 

519 Model Description 

520 	The principals discussed in the preceding section are illustrated with reference to a 

521 	synthetic model. This is the same model as that used by Moore and Doherty (2004a and 

522 	2004b) in an earlier discussion of the use of regularized inversion in groundwater model 

523 	calibration. 

524 Figure la shows the 500m x 800m rectangular domain of a single layer groundwater 

525 	model of flow in a confined aquifer of 10m thickness. A fixed inflow of 0.1/m 3/day/m 

526 occurs through the upper boundary of the model; heads are fixed at Om along the lower 

527 	boundary. An hydraulic conductivity field with a log average value of zero was generated 

528 	using a log-exponential variogram with a range (3 times the coefficient in the exponent in 

529 	the variogram equation) of 200m and a sill of 0.2. Diffuse recharge is zero. F1ow w'ithin 

530 the domain was simulated using MODFLOW-2000 (Harbaugh et al, 2000) using a finite- 

531 	difference grid consisting of 50 rows and 80 columns of 10m square cells. The travel time 

532 	and track of a particle released near the top boundary was simulated using the ADV 

533 package of MODFLOW-2000 (Anderman and Hill, 2001); the path of the particle is 

534 	depicted in Figure 1 a. 
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535 	On the basis of the hydraulic conductivity field shown in Figure la, heads were generated 

536 	at 12 wells, the locations of which are shown in Figure lb; heads in these wells vary 

537 between 5.7m in the upper part of the model domain and l.lm in the lower part of the 

538 	domain. These heads were used for model calibration after the addition of Gaussian noise 

539 	with a standard deviation of 0.3m. 

540 	Spatial parameterization was implemented using pilot points. As described in Doherty 

541 	(2003) and Moore and Doherty (2004a), the calibration process assigns hydraulic 

542 	conductivity values to these points; these values are then spatially interpolated to al.l cells 

543 	of the model domain (using kriging in the present case). 

544 Regularized inversion of the head data was undertaken using PEST (Doherty, 2004), with 

545 	assistance from the PEST Groundwater Utilities (Doherty, 2003); both truncated SVD 

546 	and constrained minimization regularization were employed. In ttie latter case 

547 	regularization constraints were of the "preferred value" type, with the log of each pilot 

548 	point hydraulic conductivity being assigned a preferred value of zero; thus the Z matrix 

549 	of equation 27 was an m x m identity matrix. Q, was calculated as the inverse of an inter- 

550 	pilot point covariance matrix; pilot point covariances were calculated using the same 

551 	variogram as that employed for generation of the hydraulic conductivity field. The 

552 	regularization weight factor 0 was calculated by PEST as that required to achieve a user- 

553 	supplied value for cD n, the objective function at which "adequate calibration" is deemed to 

554 	occur in accordance with the level of ineasurement noise. 

555 	Analyses in this section focus on a prediction of the particle exit location, the "true value" 

~ 
	556 	of this prediction being 206.78 meters from the left side of the model. This prediction, 
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557 	rather than travel time, was chosen for the analyses described below due to the fact that 

558 	the latter prediction is relatively unconstrained by a calibration process that is based on 

559 	heads alone. 

560 Predictive Variance Minimization 

561 	With Gaussian noise of standard deviation 0.3m added to the heads, an objective function 

562 	value (i.e. (Dn  of equation 9) of 12.0 should be sought in a regularized inversion process in 

563 	which measurement weights are all set to 3.33, this being the inverse of the noise 

564 standard deviation. (Note that weights are squared to form the diagonal elements of Q.) 

565 	Table 1 summarizes the outcomes of undertaking regularized inversion using truncated 

566 , SVD with a varying number of pre-truncation eigenvalues. It is apparent from this table 

567 	that an objective function of 12 can be achieved with as few as 4 eigenvalues. If the terms 

568 	of equations 26 are computed using sensitivities calculated on the basis of "calibrated" 

569 	parameters (i.e. parameters calculated using 4 eigenvalues), the graphs of Figure 2 result; 

570 note that C(p) in equations 26 was calculated using the same variogram as that which was 

571 	used to generate the hydraulic conductivity field, and thus properly represents the spatial 

572 	characteristics of the true hydraulic property field. Figure 3a shows the "calibrated" 

573 	parameter field. 

574 The monotonic rise of the second term of equations 26, and the monotonic fall of the first 

575 	term are apparent from Figure 2(except for the first point, where numerical noise 

576 	incurred through the SVD process causes a slight rise). As the number of eigenvalues 

577 	increases, the second term does not rise fast enough relative to the first term for the sum 

578 of the two terms to incur a minimum; however if the graph were to be extended to 13 
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579 eigenvalues (at which stage the second term of equation 26 would be extremely high due 

580 	to the fact that with 12 observations the rank of X`QX is only 12), a pronounced 

581 	minimum at 12 eigenvalues would be apparent. 

582 	Figure 2 demonstrates that even though the model can be considered to be calibrated with 

583 	truncation occurring at 4 eigenvalues, minimum predictive error variance is achieved at 

584 	12 eigenvalues. It is interesting to note from Table 1 that the most accurate prediction of 

585 	particle exit point location was made by the model calibrated using 7 eigenvalues. 

586 	The calibration process was repeated using constrained minimization regularization. For 

587 	(Dn  equal to 12, the corresponding (3 value is 1.76. The resulting calibrated parameter field 

588 	is shown in Figure 3b. 

589 	Using sensitivities calculated on the basis of the calibrated parameter field, the terms of 

590 	equation 26 were calculated for varying values of (3; see Figure 4. Monotonicity of the 

591 	two terms of equation 26 is clearly demonstrated in this figure. It is also apparent that the 

592 	minimuin predictive error variance is achieved at a0 value of about 1.0. This 

593 	demonstrates once again that model performance with respect to the prediction of particle 

594 	exit location is optimized when the calibration process involves some degree of 

595 	overfitting. 

596 	Table 2 shows model-predicted exit points calculated on tlie basis of parameters achieved 

597 	through regularized inversion using different values of (3. The closest prediction to the 

598 	actual exit point occurs at a(3 value of between 0.86 and 1.12. 
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599 Observation Weights Adjustment for Prediction Optimization 

600 	In the previous section it was demonstrated that a model can be considered "calibrated", 

601 	yet may not be optimally parameterized for the making of a specific prediction. It was 

602 	suggested in the theoretical section of this paper that if data is weighted in accordance 

603 	with its relevance to a specific prediction, the calibrated model may be capable of making 

604 	that prediction with a lower probability of error. 

605 	For the analyses documented in the previous section, observation weights were uniformly 

606 	set at 3.33, this being the inverse of ineasurement uncertainty. These analyses were 

607 	repeated with weights for 5 of the 12 observations being doubled. With this weighting 

608 	strategy the model can be considered "calibrated" with an objective function of 27.0. The 

609 	observations chosen for enhanced weighting were head values at the wells depicted as 

610 diamonds in Figure 1 b. These observations were chosen for special treatment because the 

611 	normalized inner products of the prediction sensitivity with the sensitivities of these 

612 	observations were all greater than 0.1; for all other observations normalized inner 

613 	products were less than 0.1. (Inner products were calculated using sensitivities pertaining 

614 	to the parameters depicted in Figure 3b.) 

615 Table 3 shows the results of truncated SVD regularized inversion with a varying 

616 truncation limit. Once again, the model can be said to be "calibrated" if only 4 

617 eigenvalues are employed. Figure 5 shows the terms of equation 32 (which must now be 

618 	used instead of (26) because equation 6 no longer applies) calculated using sensitivities 

619 	pertaining to the "calibrated model". The minimum predictive error variance (once again 

620 	obtained at 12 eigenvalues) is slightly lower than that obtained with uniform weights. 
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621 	What is more important however, is that the predictive error variance at 4 eigenvalues is 

622 much lower than for uniform weights. Thus the "calibrated model" is a much better 

623 	predictor of the exit point location. Calibration results listed in Table 3 support this 

624 	conclusion. 

625 The worth of selective observation weights enhancement was also tested using 

626 	constrained minimization regularization. Figure 6 and Table 4 show the results. 

627 	Calibration is achieved at aP value of about 3.3 (i.e. with 11P equal to about 0.3). 

628 	Predictive error variance at the point of calibration is lower in Figure 6 than in Figure 4 

629 where no weights enhancement was undertaken. Table 4 shows that the "calibrated 

630 	model" is indeed a good predictor of particle exit point location. 

631 	Predictive variance with parameter zonation 

632 	As described above, predictive error variance calculation based on lumped 

633 parameterization can be accommodated if equation 26a incorporates R and G matrices 

634 described by equations 38. This is now demonstrated using parameters based on zones of 

635 	piecewise uniformity. . 

636 	Figure 7 shows the zonatiqn pattern chosen for this demonstration; boundaries for three 

637 	(non-contiguous) zones were drawn against the background of the true hydraulic 

638 	conductivity field depicted in Figure la (a luxury not available in normal modeling 

639 	practice). Estimation of zonal hydraulic conductivities was undertaken using the same 

640 	calibration dataset as that used for previous analyses. However weights enhancement was 

641 	not employed, each head measurement thus being assigned a weight of 3.33. The X 

642 	matrix of equation 26 was calculated on the basis of the pilot points depicted in Figure 
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643 	1b, with "calilirated" values assigned to these points according to the zone in which they 

644 	lie; however, in order to establish true correspondence between pilot point and zone 

645 	parameters, these sensitivities were calculated on the basis of a kriging procedure which 

646 	prevented interpolation from pilot points in one zone to cells occupying another zone. 

647 	Predictive error variance was calculated as 10189m 2 . The contribution to this variance 

648 	from the second term of equation 26 is 173m 2, this being the predictive error variance 

649 	that would have been calculated using traditional methods that ignore the implicit 

650 	regularization of the lumping process. The actual model prediction was a surprisingly 

651 	good 210m. This level of accuracy is partly attributable to luck, and partly attributable to 

652 	the fact that zonation definition took place against the background of the true hydraulic 

653 	conductivity field, this constituting the addition of a significant amount of extra . 

654 	information to the calibration process. Nevertheless, the above calculation shows that the 

655 	potential error associated with this model prediction is still quite high. 

656 Discussion and Conclusions 

657 	It has been demonstrated that where a model must be used to make a specific prediction, 

658 	or type of prediction, it can become a better'instrument for the making of that prediction 

659 	if this role is borne firmly in mind during the process of calibrating it. One way in which 

660 	this can be achieved is to give more weight to observations that most resemble the type of 

661 	predictions the model is required to make. Though demonstrated in the context of a small 

662 	synthetic groundwater model, this approach to calibration can be extended to other model 

663 	types as well. For example if a watershed model is to be employed for prediction of flood 

664 	peaks, then it will probably be a better predictor of those peaks if a weighting philosophy 
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665 	is chosen that allows the rising limbs of historical flow peaks, and the peaks themselves, 

666 	to be "highly visible" when the model is calibrated. Alternatively, if the model is to be 

667 	used for the making of predictions pertinent to low flow conditions (such conditions often 

668 	being important for biotic health), then historical recessions and low flows should figure 

669 	prominently in the calibration process. 

670 This philosophy becomes especially important where a model is used to predict the 

671 	response of an environmental system to extreme events (which many models are built 

672 	specirically to do). Under these circumstances, the historical data that most resembles the 

673 	types of predictions which the model will be required to make may comprise only a small 

674 	part of the total calibration dataset. If this data is not given sufficient weight to be clearly 

675 	"seen" during the calibration process, in spite of the numerical predominance of other 

676 	data, then the model will not live up to its full potential as an adequate predictor of these 

677 	extremes. This pragmatic approach to weights assignment is significantly different from 

678 	that which seeks to make weights reflective of ineasurement (or inferred structural) noise, 

679 	and/or that which seeks to promote homoscedascity of residuals through appropriate 

680 	measurement and model output transformation, the latter being common practice in 

681 	stream flow modeling (see, for example, Box and Cox, 1964 and the many papers which 

682 	reference this work). Ivevertheless, because of its intuitive appeal, it has been a firm tenet 

683 	of manual model calibration for many years. Furthermore, flexibility and pragmatism in 

684 	weights assignment, especially as this pertains to the assignment of relative weighting 

685 	between different measurement types, has received some positive treatment in the 

686 	modeling literature; see for example Weiss and Smith (1998) and Gupta et al. (1998). 
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687 	The suggested prediction-specific nature of the calibration process has ramifications for 

688 the way models are viewed, both by modelers themselves, and by members of the broader 

689 community that rely on them. Models are primarily viewed as numerical "emulators" of 

690 environmental processes. A particular model (especially a complex model), may have 

691 	many different types of output, each pertaining to different system state variables. 

692 	Anyone who has ever built a model knows that it would be very fortunate indeed if all 

693 	model outputs were to replicate all corresponding system states all the time, even after 

694 	large amounts of effort have been devoted to calibrating it. This simply does not happen 

695 	because numerical models are always inadequate simulators of system behavior, with 

696 	process equations, and the parameters that they use, being simplifications of reality. 

697 	Because of these simplifications, parameters often take on "hidden roles", assuming 

698 	values which are not always reflective of the system properties that they purport to 

699 	represent, but which nevertheless result in more acceptable fits between model outputs 

700 and field measurements. This is often vividly demonstrated when a resolution matrix R 

701 	(any row of which describes the contribution of different real-world parameter values to a 

702 	single calibrated model parameter value) displays the phenomenon of "parameter 

703 	contamination"; this occurs when part of the value of a calibrated parameter is 

704 	contributed by real-world parameters of entirely different type. 

705 	So it cannot be denied that because it is a simplified simulator of real-world processes, 

706 	that employs parameters that are incapable of representing the intrinsic heterogeneity of 

707 	natural systems, and that are estimated through calibration against inadequate and noisy 

708 	datasets, a model will yield erroneous predictions of future environmental behavior at 

709 some places for some of the time. Nor can it be denied that even the most complex 
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710 physically-based model is not immune from some of the properties of a"black box", as 

711 	parameters are adjusted to ensure that the extent of model error is minimized (or at least 

712 	made "sufficiently good") under historical conditions. This should not detract from a 

713 	properly-constructed model's status as the most suitable means to process a given 

714 environmental dataset. However perhaps it does mean that a model should probably be 

715 	regarded less as a potentially perfect simulator of environmental behavior and more as a 

716 	sophisticated. processor of environmental data, especially when used in conjunction with 

717 	high-end inversion software. Viewed in that capacity, this role is best served when 

718 	maximum information content is extracted from a given environmental dataset. Its 

719 	limitations as an imperfect simulator of reality dictate, however, that it may not be 

720 	possible to extract the entirety of this information in any one calibration exercise. 

721 	However, if the calibration process is properly designed in relation to a specific 

722 	prediction which the model will be required to make, then it can be "tuned" to extract the 

723 	entirety of the information content of a calibration dataset as it pertains to that specific 

724 	prediction, thereby endowing it with an enhanced ability to make that prediction 

725 	accurately under future conditions, 
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2. Terms of equation 26 and total model predictive error variance vs. number of 
eigenvalues. Sensitivities were calculated on the basis of parameters estimated 
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3. Calibrated hydraulic conductivity fields calculated using (a) truncated SVD with 
4 eigenvalues and (b) constrained minimization regularization with (Dn set to 
12.0. 

4. Terms of equation 26 and total niodel predictive error variance vs. 1/(3. 
Sensitivities were calculated on the basis of parameters estimated using aP value 
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5. Terms of equation 32 and total model predictive error variance vs. number of 
eigenvalues. Sensitivities were calculated on basis of parameters estimated using 
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6. Terms of equation 26 and total model predictive error variance vs. 1/(3. 
Sensitivities were calculated on the basis of parameters estimated using a(3 value 
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predicted particle track line is also shown. 
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Table 1. Results of truncated SVD inversion with varying number of eigenvalues. 

Eigenvalues before 

truncation 

Objective Function (m) Exit point prediction (m) 

1 34.71 245.3 

2 21.09 244.7 

3 13.08 257.9 

4 11.18 251.9 

5 11.19 247.3 

6 5.5 264.2 

7 3.15 187.0 

8 3.087 172.3 

9 3.35 183.5 

10 1.64 123.4 

11 3.155E-3 159.5 

12 1.8E-11 155.7 
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Table 2. Results of constrained minimization inversion using different 

regularization weight factors. 

p Objective Function (m) Exit point prediction (m) 

11.84 30.0 220.5 

5.66 24.0 242.1 

2.372 15.0 233.1 

1.76 12.0 226.9 

1.41 10.0 244.3 

1.12 8.0 211.1 

0.86 6.0 197.0 

0.5317 3.0 163.9 

0.3046 1.0 140.6 

0.13 0.1 154.1 
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Table 3. Results of truncated SVD inversion with varying number of eigenvalues; 

measurement weights doubled for we11s shown as diamonds in Figure lb. 

Eigenvalues before 

truncation 

Objective Function (m) Exit point prediction (m) 

1 73.74 244.9 

2 37.35 240.2 

3 29.69 245.2 

4 20.12 220.3 

5 13.95 205.4 

6 13.57 204.9 

7 6.847 203.9 

8 3.933 146.6 

9 3.919 158.2 

10 1.363 138.9 

11 0.399 143.4 

12 2.33e-11 155.7 
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Table 4. Results of constrained minimization inversion using different 

regularization weight factors; measurement weights doubled for wells shown as 

diamonds in Figure lb. 

p Objective Function (m) Exit point prediction (m) 

6.482 42 230.9 

4.162 32 218.8 

3.305 27 210.7 

2.588 22 201.3 

1.412 12 177.1 

0.8309 6 151.3 

0.5536 3 131.9 

0.3225 1 124.2 
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Figure 1. (a) Hydraulic conductivity distribution within rectangular model domain 

and trace of released particle. (b) Locations of observation wells (circles and 

diamonds) and pilot points (crosses). 

x x 	x x x 	x x x 

x x 	x x x 	x x x 

x x 	x x x 	x x x 

x x 	x x x 	x x x 

x x 	x x x 	x x x 

x x 	x x x 	x x x 

x x 	x x x 	x x x 

x x 	x x x 	x x x 

x x 	x x x 	x x x 

~ * ~ 
x x 	x x x 	x x x 

x x 	x x x 	x x x 

x x 	x x x 	x x x 

x x 	x x x 	x x x 

0.125 	1 	10 mfday 

Hydraulic canductivity 

0 

BOE-C6-0013006 



THE ROLE OF THE CALIBRATION PROCESS IN REDUCING MODEL PREDICTIVE ERROR 

Figure 2. Term.s of equation 26 and total model predictive error variance vs. 

number of eigenvalues. Sensitivities were calculated on the basis of parameters 

estimated using 4 eigenvalues. 
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Figure 3. Calibrated hydraulic conductivity fields calculated using (a) truncated 

SVD with 4 eigenvalues and (b) constrained mininiization regularization with (D„ set 

to 12.0. 
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Figure 4. Terms of equation 26 and total model predictive error variance vs. 1/p. 

Sensitivities were calculated on the basis of parameters estimated using aP value of 

1.76 (i.e. a 1/ 0 value of 0.57). 

10000 

r; 9000 
~ 
`-' 8000 
v 
~ 1000 
~ 
~ 6000 
c~ 
> 5000 L-- 
0 
~ 4000 
v 
(D 	3000 
~ 
~ 2000 

~ 1000 
~ -.- --_ 

 

—1 st te rm 
- - - 2nd term 
-F-t ot al 

 

(IL 	0 - 

0.1 1 

 

10 

1 /R 

0 

BOE-C6-0013009 



~ lstterm 
■ 2nd term 

—total 

■ ___a 
2 	4 	6 	6 	10 	12 	14 

EW  n~.. v,~,~~ 

THE ROLE OF THE CALIBRATION PROCESS IN REDUCING MODEL PREDICTIVE ERROR 

Figure 5. Terms of equation 32 and total model predictive error variance vs. 

number of eigenvalues. Sensitivities were calculated on basis of parameters 

estimated using 4 eigenvalues. Weights doubled at wells shown as diamonds in 

Figure lb. 
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Figure 6. Terms of equation 26 and total model predictive error variance vs. 1/p. 

Sensitivities were calculated on the basis of parameters estimated using aP value of 

3.3 (i.e. a 1/ P value of 0.3). 
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THE ROLE OF THE CALIBRATION PROCESS IN REDUCING MODEL PREDICTIVE ERROR 

Figure 7. Model domain showing hydraulic conductivity field deterniined using 

zones; predicted particle track line is also shown. 
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